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Motivation: Target Problems

& Many modeling problems in astrophysics, biology,
material science, and other areas require
- Enormous range of spatial and temporal scales

& To solve interesting problems, one needs:
- Adaptive methods
- Large scale parallel machines

& Titanium is designed for
- Structured grids
- Locally-structured grids (AMR)
- Unstructured grids (in progress)

Source: J. Bell, LBNL
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Titanium Background

Summary of Features Added to Java

& Based on Java, a cleaner C++
- Classes, automatic memory management, etc.
- Compiled to C and then machine code, no JVM

& Same parallelism model at UPC and CAF
— SPMD parallelism
- Dynamic Java threads are not supported
@ Optimizing compiler
- Analyzes global synchronization
- Optimizes pointers, communication, memory
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& Multidimensional arrays: iterators, subarrays, copying
& Immutable (“value”) classes

& Templates

# Operator overloading

# Scalable SPMD parallelism replaces threads

# Global address space with local/global reference
distinction

# Checked global synchronization
& Zone-based memory management (regions)

# Libraries for collective communication, distributed
arrays, bulk I/O, performance profiling
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Outline

SPMD Execution Model

& Titanium Execution Model
- SPMD
- Global Synchronization
- Single
& Titanium Memory Model
# Support for Serial Programming
¢ Performance and Applications

& Compiler/Language Status
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& Titanium has the same execution model as UPC and CAF

& Basic Java programs may be run as Titanium programs,
but all processors do all the work.

& E.g., parallel hello world
class HelloWorld {
public static void main (String [] argv) {
System.out.printin(“Hello from proc “
+ Ti.thisProcQ
+ “ out of “
+ Ti.numProcs());
3
¥

# Global synchronization done using Ti.barrier()
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Barriers and Single

& Common source of bugs is barriers or other collective
operations inside branches or loops

barrier, broadcast, reduction, exchange

# A “single” method is one called by all procs
public single static void allStep(...)

# A “single” variable has same value on all procs
int single timestep = 0;

# Single annotation on methods is optional, but useful in
understanding compiler messages

& Compiler proves that all processors call barriers together
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Explicit Communication: Broadcast

& Broadcast is a one-to-all communication

broadcast <value> from <processor>

& For example:
int count = 0;
int allCount = 0O;
if (Ti.thisProc() == 0) count = computeCount();
allCount = broadcast count from 0;

@ The processor number in the broadcast must be single;
all constants are single.

— All processors must agree on the broadcast source.

¢ The allCount variable could be declared single.
- All will have the same value after the broadcast.

March 5, 2004 ©5267 Lecture 12

More on Single

& Global synchronization needs to be controlled
if (this processor owns some data) {
compute on it
barrier

¥
# Hence the use of “single” variables in Titanium

& If a conditional or loop block contains a barrier, all
processors must execute it
- conditions must contain only single variables

& Compiler analysis statically enforces freedom from
deadlocks due to barrier and other collectives being
called non-collectively "Barrier Inference" [Gay & Aiken]
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Single Variable Example

# Barriers and single in N-body Simulation
class ParticleSim {

public static void main (String [] argv) {

int single allTimestep = 0;

int single allEndTime = 100;

for (; allTimestep < allEndTime; allTimestep++){
read remote particles, compute forces on mine
Ti.barrier(Q);
write to my particles using new forces
Ti.barrier(Q);

3
b
¥
¢ Single methods inferred by the compiler
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Using Broadcast to Assign Single

# Broadcast returns a single value

# The following example will have a randomly chosen
process initiate the broadcast at each step

int myChoice = (int) (Math.random() *
Ti.numProcs());
for (int single i = 0; i < 100; i++) {
master = broadcast myChoice from master;

¥

& The example is contrived, but this paradigm is used
to assign single values that come from user input
or afile, for example.
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Outline

& Titanium Execution Model

& Titanium Memory Model
- Global and Local References
- Exchange: Building Distributed Data Structures
- Region-Based Memory Management

& Support for Serial Programming
# Performance and Applications

& Compiler/Language Status
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Global Address Space

# Globally shared address space is partitioned

& References (pointers) are either local or global
(meaning possibly remote)

Use of Global / Local

# Global references (pointers) may point to remote
locations
- Reference are global by default
- Easy to port shared-memory programs

# Global pointers are more expensive than local
— True even when data is on the same processor
- Costs of global:
space (processor number + memory address)
dereference time (check to see if local)

& May declare references as local
— Compiler will automatically infer local when possible
- This is an important performance-tuning mechanism

March 5, 2004 ©5267 Lecture 12

14

Aside on Titanium Arrays

§ x:1 .
& \ Object heaps
g / are shared
2 | ]
g (¢’ ] (o /] Program_stacks
0 are private
po pn
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Global Address Space
& Processes allocate locally |Processo| |F’roceSS 1
¢ References can be passed to winner: 2 winner: 2
other processes gv gv
class C { public int val;... } v Iv
C gv; // global pointer
C local lv; /7 local pointer
if (Ti.thisProc() == 0) {
Iv = new CQ;
3
gv = broadcast Iv from 0;
//data race

gv.val = Ti.thisProc(Q+1;

int winner = gv.val
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& Titanium adds its own multidimensional array
class for performance

& Distributed data structures are built using a 1D
Titanium array

# Slightly different syntax, since Java arrays still
exist in Titanium, e.g.:
int [1d] a;
a = new int [1:100];
a[1] = 2*a[1] - a[0] - a[2];

& Will discuss these more later...
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Explicit Communication: Exchange

Distributed Data Structures

& To create shared data structures
- each processor builds its own piece
- pieces are exchanged (for objects, just exchange
pointers)

& Exchange primitive in Titanium
int [1d] single allData;
allData = new int [O:Ti.numProcs()-1];
allData.exchange(Ti.thisProc()*2);

& E.g., on 4 procs, each will have copy of allData:

allData
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¢ Building distributed arrays:
Particle [1d] single [1d] allParticle =
new Particle [0:Ti.numProcs-1][1d];
Particle [1d] myParticle =
new Particle [0O:myParticleCount-1];
allParticle.exchange(myParticle);

Al to all broadcast

& Now each processor has array of pointers, one to
each processor’s chunk of particles

G

PO P1 P2
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Region-Based Memory Management

& An advantage of Java over C/C++ is:
- Automatic memory management

@ But garbage collection:
- Has areputation of slowing serial code
- Does not scale well in a parallel environment

& Titanium approach:
- Preserves safety — cannot deallocate live data
- Garbage collection is the default (on most platforms)

- Higher performance is possible using region-based
explicit memory management

- Takes advantage of memory management phases
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Region-Based Memory Management

# Need to organize data structures
# Allocate set of objects (safely)

# Delete them with a single explicit call (fast)
PrivateRegion r = new PrivateRegion();
for (int j = 0; j < 10; j++) {
int[] x = new ( r ) int[j + 1];
work(d, X);
}
try { r.delete(); }
catch (RegionlnUse oops) {
System.out.printIn(“failed to delete™);
3
}
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Outline

& Titanium Execution Model
4 Titanium Memory Model

& Support for Serial Programming
- Immutables
- Operator overloading
- Multidimensional arrays
- Templates
& Performance and Applications

& Compiler/Language Status
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Java Objects

# Primitive scalar types: boolean, double, int, etc.
- implementations store these on the program stack
- access is fast -- comparable to other languages

# Objects: user-defined and standard library
- always allocated dynamically in the heap
- passed by pointer value (object sharing)
- has implicit level of indirection
- simple model, but inefficient for small objects

real: 7.1

imag: 4.3
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Java Object Example

class Complex {
private double real;
private double imag;
public Complex(double r, double i) {
real = r; imag = i; }
public Complex add(Complex c) {
return new Complex(c.real + real, c.imag + imag);
public double getReal { return real; }
public double getlmag { return imag; }
b3

Complex ¢ = new Complex(7.1, 4.3);
c = c.add(c);
class VisComplex extends Complex { ... }
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Immutable Classes in Titanium

& For small objects, would sometimes prefer
- to avoid level of indirection and allocation overhead
- pass by value (copying of entire object)
- especially when immutable -- fields never modified
extends the idea of primitive values to user-defined types
# Titanium introduces immutable classes
- all fields are implicitly final (constant)
- cannot inherit from or be inherited by other classes
- needs to have 0-argument constructor

& Examples: Complex, xyz components of a force

& Note: considering lang. extension to allow mutation
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Example of Immutable Classes

& The immutable complex class nearly the same
immutable class Complex { Zero-argument
. 4
- Complex () {real=0; imag=0;}constructor
new required

keyword
Y 3} -~

Rest unchanged. No assignment
to fields outside of constructors.

# Use of immutable complex values
Complex c1 = new Complex(7.1, 4.3);
Complex c2 = new Complex(2.5, 9.0);
cl = cl.add(c2);

# Addresses performance and programmability

- Similar to C structs in terms of performance
- Support for Complex with a general mechanism
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Operator Overloading

& Titanium provides operator overloading
- Convenient in scientific code
— Feature is similar to that in C++

class Complex {
public Complex op+(Complex c) {
return new Complex(c.real + real, c.imag + imag);

b

Complex cl = new Complex(7.1, 4.3);
Complex c2 = new Complex(5.4, 3.9);
Complex c3 = cl + c2;

March 5, 2004 ©S267 Lecture 12 26

Arrays in Java

& Arrays in Java are objects

2d

@ Only 1D arrays are directly array

supported

& Multidimensional arrays
are arrays of arrays

& General, but slow

# Subarrays are important in AMR (e.g., interior of a grid)
— Even C and C++ don’t support these well
- Hand-coding (array libraries) can confuse optimizer

# Can build multidimensional arrays, but we want
— Compiler optimizations and nice syntax
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Multidimensional Arrays in Titanium

& New multidimensional array added
- Supports subarrays without copies

can refer to rows, columns, slabs
interior, boundary, even elements...

- Indexed by Points (tuples of ints)
- Built on a rectangular set of Points, RectDomain

- Points, Domains and RectDomains are built-in
immutable classes, with useful literal syntax

# Support for AMR and other grid computations
- domain operations: intersection, shrink, border
- bounds-checking can be disabled after debugging
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Unordered lteration

& Motivation:

- Memory hierarchy optimizations are essential

- Compilers sometimes do these, but hard in general
& Titanium has explicitly unordered iteration

- Helps the compiler with analysis

- Helps programmer avoid indexing details

foreach (p in r) { .. A[p] .. }

p is a Point (tuple of ints), can be used as array index
ris a RectDomain or Domain

# Additional operations on domains to transform

@ Note: foreach is not a parallelism construct
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Point, RectDomain, Arrays in General

& Points specified by a tuple of ints
Point<2> Ib [1, 11;
Point<2> ub [10, 20];

& RectDomains given by 3 points:
- lower bound, upper bound (and optional stride)
RectDomain<2> r = [lb : ub];

& Array declared by num dimensions and type
double [2d] a;

& Array created by passing RectDomain
a = new double [r];
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Simple Array Example

More Array Operations

& Matrix sum in Titanium

Point<2> Ib = [1,1];

Point<2> ub = [10,20]; No array allocation here
RectDomain<2> r = [lb:ub]; }

double [2d] a = new double [r]; Syntactic sugar
double [2d] b = new double [1:10,1:20];
double [2d] c = new double [Ib:ub:[1,1]];

for (int i = 1; i <= 10; i++) Optional stride
for (int j = 1; j <= 20; j++)
cli.jl = ali.j] + b[i.j]: Equivalent loops

foreach(p in c.domain()) { c[p]l = a[p] + b[pl; }
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& Titanium arrays have arich set of operations
e
translate restrict slice (n dim to n-1)
# None of these modify the original array, they just
create another view of the data in that array
# You create arrays with a RectDomain and get it
back later using A.domain() for array A
- A Domain is a set of points in space
- A RectDomain is arectangular one

# Operations on Domains include +, -, * (union,
different intersection)
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MatMul with Titanium Arrays

Example: Setting Boundary Conditions

public static void matMul (double [2d] a,
double [2d] b,
double [2d] c) {

foreach (ij in c.domain(Q)) {
double [1d] aRowi = a.slice(1, ij[1]);
double [1d] bColj = b.slice(2, ij[2]);
foreach (k in aRowi.domain()) {

c[ij] += aRowi[k] * bColj[k];

¥

3

}

Current performance: comparable to 3 nested loops in C
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Proc 1

i

Iocal_gridsp | l%lrk
, |
1

I " "
angrios>l [7T 7] SIS "o epe

foreach (1 in local_grids.domainQ)) {
foreach (a in all_grids.domain()) {
local_grids[I].copy(all_grids[a]);

3
¥
« Can allocate arrays in a global index space.
« Let compiler computer intersections
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Templates

Example of Templates

& Many applications use containers:
- Parameterized by dimensions, element types,...
- Java supports parameterization through inheritance

Can only put Object types into containers
Inefficient when used extensively

& Titanium provides a template mechanism closer to C++
- Can be instantiated with non-object types (double,
Complex) as well as objects

& Example: Used to build a distributed array package
- Hides the details of exchange, indirection within the
data structure, etc.
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template <class Element> class Stack {

public Element pop(Q {.--}
public void push( Element arrival ) {...}

template Stack<int> list = new template Stack<int>();
list.push( 1 ); <—— Not an object
int x = list.pop(); <«——— syrongly typed,

No dynamic cast

& Addresses programmability and performance
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Using Templates: Distributed Arrays

Outline

template <class T, int single arity>
public class DistArray {
RectDomain <arity> single rd;
T [arity d][arity d] subMatrices;
RectDomain <arity> [arity d] single subDomains;

/* Sets the element at p to value */
public void set (Point <arity> p, T value) {
getHomingSubMatrix (p) [p] = value;
3
3

template DistArray <double, 2> single A =
new template
DistArray<double, 2> ( [[0,0]:[aHeight, aWidth]] );
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# Titanium Execution Model
¢ Titanium Memory Model
& Support for Serial Programming

# Performance and Applications
- Serial Performance on pure Java (SciMark)

- Parallel Applications
— Compiler status & usability results

& Compiler/Language Status
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Java Compiled by Titanium Compiler

Java Compiled by Titanium Compiler

SciMark Small - Linux, 1.8GHz Athlon, 256 KB L2, 1GB RAM

@ sunjdk

200 = ibmjdk
800 — Dtc.

D287
700 T m gee
600

Composite FFT SOR Monte Carlo  Sparse matmul ]
Score

—Sun JDK 1.4.1_01 (HotSpot(TM) Client VM) for Linux

—1BM J2SE 1.4.0 (Classic VM cxia32140-20020917a, jitc JIT) for 32-bit Linux
—Titaniumc v2.87 for Linux, gcc 3.2 as backend compiler -O3. no bounds check
—gcc 3.2, -03 (ANSI-C version of the SciMark2 benchmark)
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SciMark Large - Linux, 1.8GHz Athlon, 256 KB L2, 1GB RAM
350 @ sunjdk
mibmjdk
300 o287
250 mgec
2 200
g
T
S 150
100
50
0
Composite FFT SOR Monte Carlo ~ Sparse matmul w
Score

—Same as previous slide, but using a larger data set
—More cache misses, etc.
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Local Pointer Analysis

Applications in Titanium

# Global pointer access is more expensive than local
4 Compiler analysis can frequently infer that a given global pointer
always points locally
- Replace global pointer with a local one
- Local Qualification Inference (LQI)
— Data structures must be well partitioned

Effect of LQI

0 @ Original
o  After LQI

cannon 1w sample s poison

running time (sec)
]

applications
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& Benchmarks and Kernels
- Scalable Poisson solver for infinite domains
- NAS PB: MG, FT, IS, CG
- Unstructured mesh kernel: EM3D
- Dense linear algebra: LU, MatMul
- Tree-structured n-body code
- Finite element benchmark

@ Larger applications
- Gas Dynamics with AMR
- Heart and Cochlea simulation (ongoing)
— Genetics: micro-array selection
— Ocean modeling with AMR (in progress)
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Heart Simulation: Immersed Boundary Method

@ Problem: compute blood flow in the heart
- Modeled as an elastic structure in an
incompressible fluid.
+ The “immersed boundary method” [Peskin and McQueen].
+ 20 years of development in model
- Many other applications: blood clotting, inner ear,
paper making, embryo growth, and more

# Can be used for design
of prosthetics
- Artificial heart valves
- Cochlear implants
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Performance of IB Code

Time per timestep

¢ IBM SP 60
performance 50
(seaborg)

m 2563
m512'3

time (secs)
N
s

1 2 a 8 16 32 64 12
# procs

& Performance
onaPC
cluster at
Caltech
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Error on High-Wavenumber Problem

9|

& Chargeis
- 1charge of
concentric waves
- 2 star-shaped
charges.

1.31x10

0

& Largest error is where
the charge is changing
rapidly. Note:

- discretization error
- faint decomposition
error

4 Runon 16 procs

-6.47x10°
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Scalable Parallel Poisson Solver

AMR Gas Dynamics

4 Hyperbolic Solver [McCorquodale and Colella]
- Implementation of Berger-Colella algorithm
- Mesh generation algorithm included

4 2D Example (3D supported)

- Mach-10 shock on solid surface
at oblique angle

# Future: 3D Ocean Model based on Chombo algorithms
— [Wen and Colella]
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& MLC for Finite-Differences by Balls and Colella

# Poisson equation with infinite boundaries

- arise in astrophysics, some biological systems, etc.

¢ Method is scalable 5 y
X X = 512x512 poinis per processor
— Low communication (<5%) = 2565256 points per processor

= 1 28x128 points per processor

& Performance on

- SP2 (shown) and T3E 7 4| ]
- scaled speedups 2
- nearly ideal (flat) B ]
- —————— g &
& Currently 2D and T . 4 16
non-adaptive TOCRSS0LS
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Qutline

4 Titanium Execution Model
 Titanium Memory Model

# Support for Serial Programming
# Performance and Applications

& Compiler/Language Status
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Titanium Compiler Status

# Titanium runs on almost any machine
— Requires a C compiler and C++ for the translator
- Pthreads for shared memory
— GASNet for distributed memory, which exists on
Quadrics (Elan), IBM/SP (LAPI), Myrinet (GM), Infiniband,
UDP, Shem* (Altix and X1), Dolphin* (SCI), and MPI
Shared with Berkeley UPC compiler
# Recent language and compiler work
- Indexed (scatter/gather) array copy
- Non-blocking array copy*
- Loop level cache optimizations
- Inspector/Executor*

*Work is still in progress
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Programmability

& Immersed boundary method developed in ~1 year

- Extended to support 2D structures ~1 month
- Reengineered over ~6 months

# Preliminary code length measures

— Simple torus model
Serial Fortran torus code is 17045 lines long (2/3 comments)
Parallel Titanium torus version is 3057 lines long.
- Full heart model
Shared memory Fortran heart code is 8187 lines long
Parallel Titanium version is 4249 lines long.
- Need to be analyzed more carefully, but not a significant
overhead for distributed memory parallelism
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Titanium and UPC Project Ideas

# Past 267 project ideas
- Tree-based N-Body code in Titanium
- Finite element code in Titanium

# Future project ideas for Titanium and UPC
- Splash benchmarks in either language
— Missing NAS benchmarking in Titanium
- Your favorite application

& What makes it interesting?
- Understanding the performance and scalability
Why does it perform as it does?
Performance model
Effectiveness of optimizations in application, runtime, compiler?
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Titanium Group (Past and Present)

Susan Graham

. * Ben Liblit
# Katherine Yelick & Peter McQuorquodale (LBNL)
& Paul Hilfinger & Sabrina Merchant
@ Phillip Colella (LBNL) # Carleton Miyamoto
¢ Alex Aiken # Chang Sun Lin

@ Geoff Pike
¢ Greg Balls ¢ Luigi Semenzato (LBNL)
¢ Andrew Begel ¢ Armando Solar-Lezama
4 Dan Bonachea 4 Jimmy Su
& Kaushik Datta & Tong Wen (LBNL)
4 David Gay 4 Siu Man Yau
¢ Ed Givelberg ¢ and many undergraduate
# Arvind Krishnamurthy researchers

http://titanium.cs.berkeley.edu
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