
1

1

Titanium: A Java Dialect for
High Performance Computing

U.C. Berkeley
and LBNL

http://titanium.cs.berkeley.edu

Dan Bonachea

(slides courtesy of Kathy Yelick)

2

Titanium Group (Past and Present)
• Susan Graham
• Katherine Yelick
• Paul Hilfinger
• Phillip Colella (LBNL)
• Alex Aiken

• Greg Balls
• Andrew Begel
• Dan Bonachea
• Kaushik Datta
• David Gay
• Ed Givelberg
• Arvind Krishnamurthy

• Ben Liblit
• Peter McQuorquodale (LBNL)
• Sabrina Merchant
• Carleton Miyamoto
• Chang Sun Lin
• Geoff Pike
• Luigi Semenzato (LBNL)
• Jimmy Su
• Tong Wen (LBNL)
• Siu Man Yau

(and many undergrad researchers)

3

Motivation: Target Problems
• Many modeling problems in astrophysics, biology,

material science, and other areas require
– Enormous range of spatial and temporal scales

• To solve interesting problems, one needs:
– Adaptive methods
– Large scale parallel machines

• Titanium is designed for methods with
– Structured grids
– Locally-structured grids (AMR)
– Unstructured grids (in progress)

4

Common Requirements
• Algorithms for numerical PDE

computations are
– communication intensive
– memory intensive

• AMR makes these harder
– more small messages
– more complex data structures
– most of the programming effort is

debugging the boundary cases
– locality and load balance trade-off is hard

5

Titanium
• Based on Java, a cleaner C++

– classes, automatic memory management, etc.
– compiled to C and then native binary (no JVM)

• Same parallelism model as UPC and CAF
– SPMD with a global address space
– Dynamic Java threads are not supported

• Optimizing compiler
– static (compile-time) optimizer, not a JIT
– communication and memory optimizations
– synchronization analysis (e.g. static barrier analysis)
– cache and other uniprocessor optimizations

6

Summary of Features Added to Java
• Multidimensional arrays with iterators & copy ops
• Immutable (“value”) classes
• Templates
• Operator overloading
• Scalable SPMD parallelism
• Global address space
• Checked Synchronization
• Zone-based memory management (regions)
• Support for N-dim points, rectangles & point sets
• Libraries for collective communication, distributed

arrays, bulk I/O, performance profiling

2

7

Outline
• Titanium Execution Model

– SPMD
– Global Synchronization
– Single

• Titanium Memory Model
• Support for Serial Programming
• Performance and Applications
• Compiler/Language Status
• Compiler Optimizations & Future work

8

SPMD Execution Model
• Titanium has the same execution model as UPC and

CAF
• Basic Java programs may be run as Titanium, but all

processors do all the work.
• E.g., parallel hello world

class HelloWorld {
public static void main (String [] argv) {

System.out.println(“Hello from proc “ +
Ti.thisProc());

}
}

• Any non-trivial program will have communication
and synchronization

9

SPMD Model
• All processors start together and execute same code, but not in

lock-step
• Basic control done using

– Ti.numProcs() => total number of processors
– Ti.thisProc() => id of executing processor

• Bulk-synchronous style
read all particles and compute forces on mine
Ti.barrier();
write to my particles using new forces
Ti.barrier();

• This is neither message passing nor data-parallel

10

Barriers and Single
• Common source of bugs is barriers or other

collective operations inside branches or loops
barrier, broadcast, reduction, exchange

• A “single” method is one called by all procs
public single static void allStep(...)

• A “single” variable has same value on all procs
int single timestep = 0;

• Single annotation on methods is optional, but
useful to understanding compiler messages

11

Explicit Communication: Broadcast
• Broadcast is a one-to-all communication

broadcast <value> from <processor>

• For example:
int count = 0;
int allCount = 0;
if (Ti.thisProc() == 0) count = computeCount();
allCount = broadcast count from 0;

• The processor number in the broadcast must be
single; all constants are single.
– All processors must agree on the broadcast source.

• The allCount variable could be declared single.
– All processors will have the same value after the broadcast.

12

Example of Data Input
• Same example, but reading from keyboard
• Shows use of Java exceptions

int myCount = 0;
int single allCount = 0;
if (Ti.thisProc() == 0)

try {
DataInputStream kb = new

DataInputStream (System.in);
myCount =

Integer.valueOf(kb.readLine()).intValue();
} catch (Exception e) {

System.err. println("Illegal Input");
}

allCount = broadcast myCount from 0;

3

13

More on Single
• Global synchronization needs to be controlled

if (this processor owns some data) {
compute on it
barrier

}
• Hence the use of “single” variables in Titanium
• If a conditional or loop block contains a barrier, all

processors must execute it
– conditions in such loops, if statements, etc. must contain only

single variables
• Compiler analysis statically enforces freedom from

deadlocks due to barrier and other collectives being
called non-collectively "Barrier Inference" [Gay & Aiken]

14

Single Variable Example

• Barriers and single in N-body Simulation
class ParticleSim {

public static void main (String [] argv) {
int single allTimestep = 0;
int single allEndTime = 100;
for (; allTimestep < allEndTime; allTimestep++){

read all particles and compute forces on mine
Ti.barrier();
write to my particles using new forces
Ti.barrier();

}
}

}

• Single methods inferred by the compiler

15

Outline

• Titanium Execution Model
• Titanium Memory Model

– Global and Local References
– Exchange: Building Distributed Data Structures
– Region-Based Memory Management

• Support for Serial Programming
• Performance and Applications
• Compiler/Language Status
• Compiler Optimizations & Future work

16

Global Address Space
• Globally shared address space is partitioned
• References (pointers) are either local or global

(meaning possibly remote)

Object heaps
are shared

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1

y: 2

Program stacks
are private

l: l: l:

g: g: g:

x: 5
y: 6

x: 7
y: 8

p0 p1 pn

17

Use of Global / Local
• As seen, global references (pointers) may point to

remote locations
– easy to port shared-memory programs

• Global pointers are more expensive than local
– True even when data is on the same processor
– Use local declarations in critical inner loops

• Costs of global:
– space (processor number + memory address)
– dereference time (check to see if local)

• May declare references as local
– Compiler will automatically infer them when possible

18

Global Address Space
• Processes allocate locally
• References can be passed to

other processes
class C { int val;... }
C gv; // global pointer
C local lv; // local pointer

if (Ti.thisProc() == 0) {
lv = new C();

}
gv = broadcast lv from 0;
gv.val = ...;
... = gv.val;

Process 0
Other

processes

lv
gv

lv
gv

lv
gv

lv
gv

lv
gv

lv
gv

LOCAL
HEAP

LOCAL
HEAP

4

19

Shared/Private vs Global/Local
• Titanium’s global address space is based on pointers

rather than shared variables
• There is no distinction between a private and shared

heap for storing objects
– Although recent compiler analysis infers this distinction and uses it

for performing optimizations [Liblit et. al 2003]

• All objects may be referenced by global pointers or by
local ones

• There is no direct support for distributed arrays
– Irregular problems do not map easily to distributed arrays, since

each processor will own a set of objects (sub-grids)
– For regular problems, Titanium uses pointer dereference instead of

index calculation
– Important to have local “views” of data structures

20

Aside on Titanium Arrays
• Titanium adds its own multidimensional array

class for performance
• Distributed data structures are built using a 1D

Titanium array
• Slightly different syntax, since Java arrays still

exist in Titanium, e.g.:
int [1d] arr;
arr = new int [1:100];
arr[1] = 4*arr[1];

• Will discuss these more later…

21

Explicit Communication: Exchange

• To create shared data structures
– each processor builds its own piece
– pieces are exchanged (for object, just exchange pointers)

• Exchange primitive in Titanium
int [1d] single allData;
allData = new int [0:Ti.numProcs() -1];
allData.exchange(Ti. thisProc()*2);

• E.g., on 4 procs, each will have copy of allData:

0 2 4 6

22

Building Distributed Structures
• Distributed structures are built with exchange:
class Boxed {

public Boxed (int j) { val = j;}
public int val;

}

Object [1d] single allData;
allData = new Object [0:Ti.numProcs() -1];
allData.exchange(new Boxed(Ti. thisProc());

23

Distributed Data Structures
• Building distributed arrays:

Particle [1d] single [1d] allParticle =
new Particle [0:Ti.numProcs -1][1d];

Particle [1d] myParticle =
new Particle [0:myParticleCount -1];

allParticle.exchange(myParticle);

• Now each processor has array of pointers, one to
each processor’s chunk of particles

P0 P1 P2

All to all broadcast

24

Region-Based Memory Management
• An advantage of Java over C/C++ is:

– Automatic memory management
• But unfortunately, garbage collection:

– Has a reputation of slowing serial code
– Is hard to implement and scale in a distributed environment

• Titanium takes the following approach:
– Memory management is safe – cannot deallocate live data
– Garbage collection is used by default (most platforms)
– Higher performance is possible using region-based explicit

memory management

5

25

Region-Based Memory Management
• Need to organize data structures
• Allocate set of objects (safely)
• Delete them with a single explicit call (fast)

– David Gay's Ph.D. thesis

PrivateRegion r = new PrivateRegion ();
for (int j = 0; j < 10; j++) {

int[] x = new (r) int[j + 1];
work(j, x);

}
try { r.delete(); }
catch (RegionInUse oops) {

System.out. println(“failed to delete”);
}

}
26

Outline
• Titanium Execution Model
• Titanium Memory Model
• Support for Serial Programming

– Immutables
– Operator overloading
– Multidimensional arrays
– Templates

• Performance and Applications
• Compiler/Language Status
• Compiler Optimizations & Future work

27

Java Objects
• Primitive scalar types: boolean, double, int, etc.

– implementations will store these on the program stack
– access is fast -- comparable to other languages

• Objects: user-defined and standard library
– always allocated dynamically
– passed by pointer value (object sharing) into functions
– has level of indirection (pointer to) implicit
– simple model, but inefficient for small objects

2.6

3
true

r: 7.1

i: 4.3

28

Java Object Example
class Complex {

private double real;
private double imag;
public Complex(double r, double i) {

real = r; imag = i; }
public Complex add(Complex c) {

return new Complex(c.real + real, c. imag + imag);
public double getReal { return real; }
public double getImag { return imag; }

}

Complex c = new Complex(7.1, 4.3);
c = c.add(c);
class VisComplex extends Complex { ... }

29

Immutable Classes in Titanium
• For small objects, would sometimes prefer

– to avoid level of indirection and allocation overhead
– pass by value (copying of entire object)
– especially when immutable -- fields never modified

• extends the idea of primitive values to user-defined datatypes

• Titanium introduces immutable classes
– all fields are implicitly final (constant)
– cannot inherit from or be inherited by other classes
– needs to have 0-argument constructor

• Example uses:
– Complex numbers, xyz components of a field vector at a

grid cell (velocity, force)
• Note: considering lang. extension to allow mutation

30

Example of Immutable Classes
– The immutable complex class nearly the same

immutable class Complex {
Complex () {real=0; imag=0; }
...

}

– Use of immutable complex values
Complex c1 = new Complex(7.1, 4.3);
Complex c2 = new Complex(2.5, 9.0);
c1 = c1.add(c2);

– Addresses performance and programmability
• Similar to C structs in terms of performance
• Allows efficient support of complex types through a

general language mechanism

Zero-argument
constructor required

new keyword

Rest unchanged. No assignment to
fields outside of constructors.

6

31

Operator Overloading

class Complex {
private double real;
private double imag;
public Complex op+(Complex c) {

return new Complex(c.real + real,
c.imag + imag);

}

Complex c1 = new Complex(7.1, 4.3);
Complex c2 = new Complex(5.4, 3.9);
Complex c3 = c1 + c2;

• For convenience, Titanium provides operator overloading
•important for readability in scientific code
•Very similar to operator overloading in C++
•Must be used judiciously

32

Arrays in Java
• Arrays in Java are objects
• Only 1D arrays are directly

supported
• Multidimensional arrays are

arrays of arrays
• General, but slow - due to

memory layout, difficulty of
compiler analysis, and bounds
checking

• Subarrays are important in AMR (e.g., interior
of a grid)
– Even C and C++ don’t support these well
– Hand-coding (array libraries) can confuse optimizer

33

Multidimensional Arrays in Titanium
• New multidimensional array added

– One array may be a subarray of another
• e.g., a is interior of b, or a is all even elements of b
• can easily refer to rows, columns, slabs or boundary regions as

sub-arrays of a larger array
– Indexed by Points (tuples of ints)
– Constructed over a rectangular set of Points, called

Rectangular Domains (RectDomains)
– Points, Domains and RectDomains are built-in

immutable classes, with handy literal syntax
• Expressive, flexible and fast
• Support for AMR and other grid computations

– domain operations: intersection, shrink, border
– bounds-checking can be disabled after debugging phase

34

Unordered Iteration
• Memory hierarchy optimizations are essential
• Compilers can sometimes do these, but hard in general
• Titanium adds explicitly unordered iteration over

domains
– Helps the compiler with loop & dependency analysis
– Simplifies bounds-checking
– Also avoids some indexing details - more concise

foreach (p in r) { … A[p] … }
– p is a Point (tuple of ints) that can be used to index arrays
– r is a RectDomain or Domain

• Additional operations on domains to subset and xform
• Note: foreach is not a parallelism construct

35

Point, RectDomain, Arrays in General
• Points specified by a tuple of ints

• RectDomains given by 3 points:
– lower bound, upper bound (and optional stride)

• Array declared by num dimensions and type

• Array created by passing RectDomain

double [2d] a;

Point<2> lb = [1, 1];
Point<2> ub = [10, 20];

RectDomain<2> r = [lb : ub];

a = new double [r];

36

Simple Array Example
• Matrix sum in Titanium
Point<2> lb = [1,1];
Point<2> ub = [10,20];
RectDomain<2> r = [lb: ub];

double [2d] a = new double [r];
double [2d] b = new double [1:10,1:20];
double [2d] c = new double [lb:ub: [1,1]];

for (int i = 1; i <= 10; i++)
for (int j = 1; j <= 20; j++)

c[i,j] = a[i,j] + b[i,j];

foreach(p in c.domain()) { c[p] = a[p] + b[p]; }

No array allocation here

Syntactic sugar

Optional stride

Equivalent loops

7

37

Naïve MatMul with Titanium Arrays

public static void matMul(double [2d] a, double [2d] b,
double [2d] c) {

int n = c.domain().max()[1]; // assumes square
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {

c[i,j] += a[i,k] * b[k,j];
}

}
}

}

38

Better MatMul with Titanium Arrays
public static void matMul(double [2d] a, double [2d] b,

double [2d] c) {
foreach (ij in c.domain()) {

double [1d] aRowi = a.slice(1, ij[1]);
double [1d] bColj = b.slice(2, ij[2]);
foreach (k in aRowi.domain()) {

c[ij] += aRowi[k] * bColj[k];
}

}
}

Current performance: comparable to 3 nested loops in C
Recent upgrades: automatic blocking for memory

hierarchy (Geoff Pike’s PhD thesis)

39

Example: Domain

Point<2> lb = [0, 0];
Point<2> ub = [6, 4];
RectDomain<2> r = [lb : ub : [2, 2]];
...
Domain<2> red = r + (r + [1, 1]);
foreach (p in red) {

...
}

(0, 0)

(6, 4)
r

(1, 1)

(7, 5)
r + [1, 1]

(0, 0)

(7, 5)
red

• Domains in general are not rectangular
• Built using set operations

– union, +
– intersection, *
– difference, -

• Example is red-black algorithm

40

Example using Domains and foreach
• Gauss-Seidel red-black computation in multigrid
void gsrb() {

boundary (phi);

for (Domain<2> d = red; d != null;

d = (d = = red ? black : null)) {

foreach (q in d)

res[q] = ((phi[n(q)] + phi[s(q)] + phi[e(q)] + phi[w(q)])*4

+ (phi[ne(q) + phi[nw(q)] + phi[se(q)] + phi[sw(q)])

20.0*phi[q] - k*rhs[q]) * 0.05;

foreach (q in d) phi[q] += res[q];

}

}

unordered iteration

41

Example: A Distributed Data Structure

local_grids

• Data can be accessed
across processor
boundaries

all_grids

42

Example: Setting Boundary Conditions
foreach (l in local_grids.domain()) {
foreach (a in all_grids.domain()) {

local_grids[l].copy(all_grids[a]);
}

} "ghost" cells

8

43

Templates

• Many applications use containers:
– E.g., arrays parameterized by dimensions, element types
– Java supports this kind of parameterization through

inheritance
• Can only put Object types into containers
• Inefficient when used extensively

• Titanium provides a template mechanism closer to
that of C++
– E.g. Can be instantiated with "double" or immutable class
– Used to build a distributed array package
– Hides the details of exchange, indirection within the data

structure, etc.

44

Example of Templates

template <class Element> class Stack {
. . .
public Element pop() {...}
public void push(Element arrival) {...}

}

template Stack< int> list = new template Stack< int>();
list.push(1);
int x = list.pop();

• Addresses programmability and performance

Not an object

Strongly typed, No dynamic cast

45

Using Templates: Distributed Arrays
template <class T, int single arity>
public class DistArray {

RectDomain < arity> single rd;
T [arity d][arity d] subMatrices;
RectDomain < arity> [arity d] single subDomains;
...

/* Sets the element at p to value */
public void set (Point < arity> p, T value) {

getHomingSubMatrix (p) [p] = value;
}

}

template DistArray <double, 2> single A = new template
DistArray<double, 2> ([[0,0]:[aHeight, aWidth]]);

46

Outline

• Titanium Execution Model
• Titanium Memory Model
• Support for Serial Programming
• Performance and Applications

– Serial Performance on pure Java (SciMark)
– Parallel Applications
– Compiler status & usability results

• Compiler/Language Status
• Compiler Optimizations & Future work

47

SciMark Benchmark
• Numerical benchmark for Java, C/C++

– purely sequential

• Five kernels:
– FFT (complex, 1D)
– Successive Over-Relaxation (SOR)
– Monte Carlo integration (MC)
– Sparse matrix multiply
– dense LU factorization

• Results are reported in MFlops
– We ran them through Titanium as 100% pure Java with no extensions

• Download and run on your machine from:
– http://math.nist.gov/scimark2
– C and Java sources are provided

Roldan Pozo, NIST, http://math.nist.gov/~Rpozo
48

SciMark Small - Linux, 1.8GHz Athlon, 256 KB L2, 1GB RAM

0

100

200

300

400

500

600

700

800

900

Composite
Score

FFT SOR Monte Carlo Sparse matmul LU

sunjdk

ibmjdk

tc2.87

gcc

–Sun JDK 1.4.1_01 (HotSpot(TM) Client VM) for Linux
–IBM J2SE 1.4.0 (Classic VM cxia32140-20020917a, jitc JIT) for 32-bit Linux
–Titaniumc v2.87 for Linux, gcc 3.2 as backend compiler -O3. no bounds check
–gcc 3.2, -O3 (ANSI-C version of the SciMark2 benchmark)

Java Compiled by Titanium Compiler

9

49

SciMark Large - Linux, 1.8GHz Athlon, 256 KB L2, 1GB RAM

0

50

100

150

200

250

300

350

Composite
Score

FFT SOR Monte Carlo Sparse matmul LU

sunjdk

ibmjdk

tc2.87

gcc

–Sun JDK 1.4.1_01 (HotSpot(TM) Client VM) for Linux
–IBM J2SE 1.4.0 (Classic VM cxia32140-20020917a, jitc JIT) for 32-bit Linux
–Titaniumc v2.87 for Linux, gcc 3.2 as backend compiler -O3. no bounds check
–gcc 3.2, -O3 (ANSI-C version of the SciMark2 benchmark)

Java Compiled by Titanium Compiler

50

Sequential Performance of Java
• State of the art JVM's

– often very competitive with C performance
– within 25% in worst case, sometimes better than C

• Titanium compiling pure Java
– On par with best JVM's and C performance
– This is without leveraging Titanium's lang. extensions

• We can try to do even better using a traditional
compilation model
– Berkeley Titanium compiler:

• Compiles Java + extensions into C
• No JVM, no dynamic class loading, whole program compilation
• Do not currently optimize Java array accesses (prototype)

51

Language Support for Performance
• Multidimensional arrays

– Contiguous storage
– Support for sub-array operations without copying

• Support for small objects
– E.g., complex numbers
– Called “immutables” in Titanium
– Sometimes called “value” classes

• Unordered loop construct
– Programmer specifies loop iterations independent
– Eliminates need for dependence analysis (short term

solution?) Same idea used by vectorizing compilers.

52

Array Performance Issues
• Array representation is fast, but access methods can

be slow, e.g., bounds checking, strides
• Compiler optimizes these

– common subexpression elimination
– eliminate (or hoist) bounds checking
– strength reduce: e.g., naïve code has 1 divide per dimension for

each array access

• Currently +/- 20% of C/Fortran for large loops
• Future: small loop and cache tiling optimizations

53

Applications in Titanium
• Benchmarks and Kernels

– Fluid solvers with Adaptive Mesh Refinement (AMR)
– Scalable Poisson solver for infinite domains
– Conjugate Gradient
– 3D Multigrid
– Unstructured mesh kernel: EM3D
– Dense linear algebra: LU, MatMul
– Tree-structured n-body code
– Finite element benchmark
– SciMark serial benchmarks

• Larger applications
– Heart and Cochlea simulation
– Genetics: micro-array selection
– Ocean modeling with AMR (in progress)

54

NAS MG in Titanium

• Preliminary Performance for MG code on IBM SP
– Speedups are nearly identical
– About 25% serial performance difference

Performance in MFlops

0
200
400
600
800

1000
1200
1400
1600

1 2 4 8

Titanium

Fortran MPI

10

55

Heart Simulation - Immersed Boundary Method
• Problem: compute blood flow in the heart

– Modeled as an elastic structure in an incompressible
fluid.

• The “immersed boundary method” [Peskin and McQueen].
• 20 years of development in model

– Many other applications: blood clotting, inner ear,
paper making, embryo growth, and more

• Can be used for design of
prosthetics
– Artificial heart valves
– Cochlear implants

56

• Immersed Boundary Method
• Material (e.g., heart muscles,

cochlea structure) modeled by
grid of material points

• Fluid space modeled by a regular
lattice

• Irregular material points need to
interact with regular fluid lattice
• Trade-off between load balancing

of fibers and minimizing
communication

• Memory and communication
intensive

• Includes a Navier-Stokes solver
and a 3-D FFT solver

Simulating Fluid Flow in Biological Systems

• Heart simulation is complete, Cochlea simulation is close to done
• First time that immersed boundary simulation has been done on

distributed-memory machines
• Working on a Ti library for doing other immersed boundary simulations

57

MOOSE Application
• Problem: Genome Microarray construction

– Used for genetic experiments
– Possible medical applications long-term

• Microarray Optimal Oligo Selection Engine
(MOOSE)
– A parallel engine for selecting the best oligonucleotide

sequences for genetic microarray testing from a sequenced
genome (based on uniqueness and various structural and
chemical properties)

– First parallel implementation for solving this problem
– Uses dynamic load balancing within Titanium
– Significant memory and I/O demands for larger genomes

58

Scalable Parallel Poisson Solver
• MLC for Finite-Differences by Balls and Colella
• Poisson equation with infinite boundaries

– arise in astrophysics, some biological systems, etc.
• Method is scalable

– Low communication (<5%)
• Performance on

– SP2 (shown) and T3E
– scaled speedups
– nearly ideal (flat)

• Currently 2D and
non-adaptive

59

Error on High-Wavenumber Problem
• Charge is

– 1 charge of
concentric waves

– 2 star-shaped
charges.

• Largest error is
where the charge is
changing rapidly.
Note:
– discretization error
– faint decomposition

error

• Run on 16 procs

-6
.4

7x
10

-9
0

 1

.3
1x

10
-9

60

AMR Poisson

• Poisson Solver [Semenzato, Pike, Colella]
– 3D AMR
– finite domain
– variable

coefficients
– multigrid

across levels

• Performance of Titanium implementation
– Sequential multigrid performance +/- 20% of Fortran
– On fixed, well-balanced problem of 8 patches, each 723

– parallel speedups of 5.5 on 8 processors

Level 0

Level 2

Level 1

11

61

AMR Gas Dynamics
• Hyperbolic Solver [McCorquodale and Colella]

– Implementation of Berger-Colella algorithm
– Mesh generation algorithm included

• 2D Example (3D supported)
– Mach-10 shock on solid surface

at oblique angle

• Future: Self-gravitating gas dynamics package

62

Outline

• Titanium Execution Model
• Titanium Memory Model
• Support for Serial Programming
• Performance and Applications
• Compiler/Language Status
• Compiler Optimizations & Future work

63

• Titanium compiler runs on almost any machine
– Requires a C compiler (and decent C++ to compile translator)
– Pthreads for shared memory
– Communication layer for distributed memory (or hybrid)

• Recently moved to live on GASNet: shared with UPC
• Obtained Myrinet, Quadrics, and improved LAPI implementation

• Recent language extensions
– Indexed array copy (scatter/gather style)
– Non-blocking array copy under development

• Compiler optimizations
– Cache optimizations, for loop optimizations
– Communication optimizations for overlap, pipelining, and

scatter/gather under development

Titanium Compiler Status

64

Implementation Portability Status
• Titanium has been tested on:

– POSIX-compliant workstations & SMPs
– Clusters of uniprocessors or SMPs
– Cray T3E
– IBM SP
– SGI Origin 2000
– Compaq AlphaServer
– MS Windows/GNU Cygwin
– and others…

• Supports many communication layers
– High performance networking layers:

• IBM/LAPI, Myrinet/GM, Quadrics/Elan, Cray/shmem, Infiniband (soon)
– Portable communication layers:

• MPI-1.1, TCP/IP (UDP)

http://titanium.cs.berkeley.edu

Automatic portability:
Titanium applications run
on all of these!
Very important productivity
feature for debugging &
development

65

Programmability
• Heart simulation developed in ~1 year

– Extended to support 2D structures for Cochlea model in ~1 month

• Preliminary code length measures
– Simple torus model

• Serial Fortran torus code is 17045 lines long (2/3 comments)
• Parallel Titanium torus version is 3057 lines long.

– Full heart model
• Shared memory Fortran heart code is 8187 lines long
• Parallel Titanium version is 4249 lines long.

– Need to be analyzed more carefully, but not a significant overhead
for distributed memory parallelism

66

Robustness
• Robustness is the primary motivation for language “safety”

in Java
– Type-safe, array bounds checked, auto memory management
– Study on C++ vs. Java from Phipps at Spirus:

• C++ has 2-3x more bugs per line than Java
• Java had 30-200% more lines of code per minute

• Extended in Titanium
– Checked synchronization avoids barrier/collective deadlocks
– More abstract array indexing, retains bounds checking

• No attempt to quantify benefit of safety for Titanium yet
– Would like to measure speed of error detection (compile time,

runtime exceptions, etc.)
– Anecdotal evidence suggests the language safety features are very

useful in application debugging and development

12

67

Calling Other Languages
• We have built interfaces to

– PETSc : scientific library for finite element applications
– Metis: graph partitioning library
– KeLP: scientific C++ library

• Two issues with cross-language calls
– accessing Titanium data structures (arrays) from C

• possible because Titanium arrays have same format on inside

– having a common message layer
• Titanium is built on lightweight communication

68

Outline
• Titanium Execution Model
• Titanium Memory Model
• Support for Serial Programming
• Performance and Applications
• Compiler/Language Status
• Compiler Optimizations & Future work

– Local pointer identification (LQI)
– Communication optimizations
– Feedback-directed search-based optimizations

69

Local Pointer Analysis
• Global pointer access is more expensive than local
• Compiler analysis can frequently infer that a

given global pointer always points locally
– Replace global pointer with a local one
– Local Qualification Inference (LQI) [Liblit]
– Data structures must be well partitioned

Effect of LQI

0

50

100

150

200

250

cannon lu sample gsrb poison

applications

ru
nn

in
g

tim
e

(s
ec

)

Original

After LQI

Same idea can be
applied to UPC's
pointer-to-shared…

70

Communication Optimizations
•Possible communication optimizations

•Communication overlap, aggregation, caching
•Effectiveness varies by machine

•Generally pays to target low-level network API

0

5

10

15

20

25

T3
E/S

hm

T3
E/E

-R
eg

T3
E/M

PI

IBM/LA
PI

IBM/M
PI

Qua
dri

cs/
Sh

m

Qua
dri

cs/
MPI

Myrin
et/

GM

Myrin
et/

MPI

GigE
/VI

PL

GigE
/M

PI

us
ec

Added Latency

Send Overhead (Alone)

Send & Rec Overhead

Rec Overhead (Alone)

[Bell, Bonachea et al] at IPDPS'03

71

Split-C Experience: Latency Overlap
• Titanium borrowed ideas from Split-C

– global address space
– SPMD parallelism

• But, Split-C had explicit non-blocking accesses built in to
tolerate network latency on remote read/write

• Also one-way communication

• Conclusion: useful, but complicated

int *global p;
x := *p; /* get */
p := 3; / put */
sync; /* wait for my puts/gets */

p :- x; / store */
all_store_sync; /* wait globally */

72

Titanium: Consistency Model
• Titanium adopts the Java memory consistency model
• Roughly: Access to shared variables that are not

synchronized have undefined behavior
• Use synchronization to control access to shared

variables
– barriers
– synchronized methods and blocks

• Open question: Can we leverage the relaxed
consistency model to automate communication overlap
optimizations?
– difficulty of alias analysis is a significant problem

13

73

Sources of Memory/Comm. Overlap
• Would like compiler to introduce put/get/store
• Hardware also reorders

– out-of-order execution
– write buffered with read by-pass
– non-FIFO write buffers
– weak memory models in general

• Software already reorders too
– register allocation
– any code motion

• System provides enforcement primitives
– e.g., memory fence, volatile, etc.
– tend to be heavyweight and have unpredictable performance

• Open question: Can the compiler hide all this?

74

Feedback-directed search-based
optimization

• Use machines, not humans for architecture-
specific tuning
– Code generation + search-based selection

• Can adapt to cache size, # registers, network buffering

– Used in
• Signal processing: FFTW, SPIRAL, UHFFT
• Dense linear algebra: Atlas, PHiPAC
• Sparse linear algebra: Sparsity
• Rectangular grid-based computations: Titanium compiler

– Cache tiling optimizations - automated search for best tiling
parameters for a given architecture

75

Current Work & Future Plans
• Unified communication layer with UPC: GASNet
• Exploring communication overlap optimizations

– Explicit (programmer-controlled) and automated
– Optimize regular and irregular communication patterns

• Analysis and refinement of cache optimizations
– along with other sequential optimization improvements

• Additional language support for unstructured grids
– arrays over general domains, with multiple values per grid point

• Continued work on existing and new applications

http://titanium.cs.berkeley.edu

