Distributed Monitors

Dan Bonachea

Tyson Condie

Goal

Implement Java monitors on distributed backends with an active-message interconnect. Supporting clusters of uniprocessors and clusters of SMPs.

Summary of Java-visible monitor operations

· Enter (monitor) – called on entry to a synchronized block or method

· Exit (monitor) – called on exit from a synchronized block or method

· Wait (monitor) – called by java.lang.Object.wait()

· Timedwait (monitor, timeout) – called by java.lang.Object.wait() when the user specifies a wait timeout.

· Notify (monitor) – called by java.lang.Object.notify()

· NotifyAll(monitor) – called by java.lang.Object.notifyAll()

The “monitor” formal is always a global pointer to a monitor structure. All operations except entry require that the calling thread is the current holder of the given monitor, a runtime exception is thrown otherwise.

Data structures used by the design

Process monitor table (PMT) – thread-local list of all monitors held by the current thread. Each entry in the list contains a global pointer to the held monitor and the current nesting level for that monitor. In essence, we are locally caching the nesting level of the owned monitor. The previous implementation would call Enter (monitor) for each nesting level potentially resulting in an active-message call.

struct process_monitor_table {

jGPointer monitor;

/* The monitor owned by the thread */

unsigned int nesting;

/* Nesting level of the owned monitor */

struct process_monitor_table *cdr;

} process_monitor_table;

Monitor – the actual data structure stored in each Java object and class that is used to store most of the bookkeeping information used to implement monitor operations. The structure contains an integer, “proc”, that indicates the current process thread which holds the monitor (or UNHELD if the monitor is free). The structure also contains two linked lists of processor id’s, one called “waiting” and the other called “trying”. The “waiting” list contains the id’s for threads which have successfully waited on the given monitor, but have not yet been notified or timed out (i.e. the “wait set” described in the Java spec). The “trying” list contains threads which are currently “competing” to acquire the monitor, this is the case when a processor has called Enter(monitor) or when a processor has waited and subsequently been notified or have timedout. The lists are FIFO queues to ensure fairness, although it is not required by the Java spec. The structure also contains a variable entitled waiting_for_monitor. This variable acts as a semaphore and is set to WAIT (defined as 0) when a thread is attempting to acquire the monitor but has not yet been granted the monitor. Conversely, waiting_for_monitor is set to GRANTED (defined as 1) once the thread has acquired the monitor.

struct tic_monitor_t {

 volatile Process proc;

/* Process that owns the monitor */

 volatile Box box;

/* Box that the process lives on */

 volatile proc_queue * waitingProcs;
/* list of waiting processes */

 volatile proc_queue * tryingProcs;
/* list of trying processes */

} tic_monitor_t;

Pseudo-code for operations

Monitor enter: When a thread attempts to obtain a lock, which it may already own. It will first check its cached set of owned monitors for the lock, if found the nesting level of the lock is incremented and the operation completes immediately. However, if the monitor is not already owned a request will be sent out, either locally or remotely, to obtain the lock. It will then wait until it has receives a signal that it has been granted the lock, adding an entry for the owned lock on the PMT prior to returning.

void monitor_enter(jGPointer monitor) {

 struct process_monitor_table *my_pmt = get_pmt(monitor);

 tic_monitor_t *mon = (tic_monitor_t *) TO_LOCAL(monitor);

 Box box = TO_BOX(monitor);

 /* Do I already own it? */

 if (my_pmt != NULL) {

 my_pmt->nesting++;

 return;

 }

 MyProcess()->waiting_for_monitor = WAIT;

 if (box == MYBOX) { /* Call monitor_enter handler directly */

lock(&AM_lock);

Call monitor_enter_request_handler locally

unlock(&AM_lock);

 } else { /* The monitor is on another box */

send monitor_enter_request via Active Message

 }

 /* Poll until waiting_for_monitor is granted */

 while (COMM_GetMyProcess()->waiting_for_monitor != GRANTED)

 tic_poll();

 insert_monitor_pmt(monitor); /* cache owned monitor, with nesting == 1 */

}

Monitor exit: When a thread releases a lock, the procedure will first verify that the thread in fact owns the lock, and if it does not an exception is thrown. The procedure will then check the current nesting level, which is decreased by one as long as it is greater than one. If the nesting is equal to one the monitor will be released. The exit request handler will be called and the thread will wait until the exit reply handler informs the thread which process, if any, to signal next. Owner will then signal the next process, if one exists. The motivation behind the owning thread signaling the next owner of the monitor is due to the AM communication protocol in the reply handlers. Essentially, the reply handler can only send a message to the thread releasing the monitor (the endpoint that called the request handler). As shown below, Box A will release the monitor by calling the release monitor handler. The reply handler will send the endpoint, corresponding to the thread next in line to own the monitor (Box B), to the calling thread (Box A). The calling thread (Box A) will signal the next owner of the monitor (Box B).

void monitor_exit(jGPointer monitor) {

 process_monitor_table* pmt = get_pmt(monitor);

 if (pmt == NULL)

 tossMonitorStateException_str("Tried to exit on a lock you didn't own.\n");

 if (pmt->nesting > 1) { /* Exit one level of nesting */

 pmt->nesting--;

 } else { /* Release monitor */

 tic_monitor_t *mon = (tic_monitor_t *)TO_LOCAL(monitor);

 Box box = TO_BOX(monitor);

 remove_monitor_from_pmt(monitor);

 COMM_GetMyProcess()->signal_proc = -2;

 COMM_GetMyProcess()->signal_box = -2;

 if (box == MYBOX) {

 lock(&AM_lock);

 Call monitor_exit_request_handler locally

 unlock(&AM_lock);

 } else {

 Call monitor_exit_request_handler via Active Message

 }

 /* Wait until I know who to signal next */

 while (COMM_GetMyProcess()->signal_proc == (Process)-2)

 tic_poll();

 if (COMM_GetMyProcess()->signal_proc != NO_PROC) { /* Signal next proc */

 if (MyProcess()->signal_box == MYBOX) { /* Signal locally */

 lock(&AM_lock);

 Call monitor_signal_request_handle locally

 unlock(&AM_lock);

 } else {

 Call monitor_signal_request_handle via Active Message

 }

 }

 }

}

Monitor wait: When a process waits on a lock we first check that it in fact owns the lock, if not an exception is thrown. It will then save the current nesting level and remove the monitor from its list of owned monitors. It will then send a wait request to the monitor and wait for a response. The response will tell the monitor whether or not it needs to signal some other process that it now owns the monitor. To possibilities exist at this point depending on if a time was provided to the “tm” formal. If no wait time has been given the process will wait until it is granted the monitor. If a wait time was given, the process will then begin to wait for that timer to expire or until the monitor has been granted. If the time expires a cancel wait request will be sent to the monitor at which time the process will contend for the monitor.

void monitor_wait(jGPointer monitor, ___tic_time_t *tm) {

 Box box; int my_nesting; tic_monitor_t *mon;

 process_monitor_table* pmt = get_pmt(monitor);

 if (pmt == NULL)

 tossMonitorStateException_str("Tried to wait on a lock you didn't own.\n");

 my_nesting = pmt->nesting; /* Save my nesting */

 remove_monitor_from_pmt(monitor); /* Remove monitor from owned monitors */

 mon = (tic_monitor_t *)TO_LOCAL(monitor);

 box = TO_BOX(monitor);

 MyProcess()->signal_proc = -2; /* Will poll until this becomes > -2 */

 MyProcess()->signal_box = -2;

 MyProcess()->waiting_for_monitor = WAIT; /* Will need to contend for the lock */

 /* Release monitor and get who to signal next */

 if (box == MYBOX) {

 lock(&AM_lock);

 Call monitor_wait_request_handler locally

 unlock(&AM_lock);

 } else {

 Call monitor_wait_request_handler via Active Message

 }

 /* Poll until I know who to signal next */

 while (COMM_GetMyProcess()->signal_proc == (Process)-2)

 tic_poll();

 /* Signal next process if one exists */

 if (COMM_GetMyProcess()->signal_proc != NO_PROC) { /* Signal next proc */

 if (MyProcess()->signal_box == MYBOX) {

 lock(&AM_lock);

 Call monitor_signal_request_handler locally

 unlock(&AM_lock);

 } else {

 Call monitor_signal_request_handler via Active Message

 }

 }

 if (tm != NULL) { /* Wait for a given amount of time or until reacquire monitor*/

 while (waiting_for_monitor != GRANTED && millisuntil(tm) >= 0)

 tic_poll();

 /* Cancel the wait for monitor, and enter monitor if not on try list */

 if (waiting_for_monitor != GRANTED) {

if (box == MYBOX) {

 lock(&AM_lock);

 Call monitor_cancel_wait_request_handler locally

 unlock(&AM_lock);

} else {

 Call monitor_cancel_wait_request_handler locally

}

 }

 }

 /* Poll until I get the monitor back */

 while (COMM_GetMyProcess()->waiting_for_monitor != GRANTED)

 tic_poll();

 insert_monitor_pmt(monitor);

 pmt = get_pmt(monitor);

 pmt->nesting = my_nesting;

}

Monitor notify: Procedure will move a thread on the monitor->waiting list to the end monitor->trying list.

void monitor_notify(jGPointer monitor) {

 process_monitor_table* pmt = get_pmt(monitor);

 tic_monitor_t *mon = (tic_monitor_t *)TO_LOCAL(monitor);

 Box box = TO_BOX(monitor);

 if (pmt == NULL)

 tossMonitorStateException_str("Tried to notify a process on a lock you didn't own.\n");

 if (box == MYBOX) {

 lock(&AM_lock);

 Call monitor_notify_request_handler locally

 unlock(&AM_lock);

 } else {

 Call monitor_notify_request_handler via Active Message

 }

}

Monitor notify all: Procedure will move the entire monitor->waiting list to the end of the monitor->trying list.

void monitor_notify_all(jGPointer monitor) {

 process_monitor_table* pmt = get_pmt(monitor);

 tic_monitor_t *mon = (tic_monitor_t *)TO_LOCAL(monitor);

 Box box = TO_BOX(monitor);

 if (pmt == NULL)

 tossMonitorStateException_str("Tried to notify all on a lock you didn't own.\n");

 if (box == MYBOX) {

 lock(&AM_lock);

 Call monitor_notify_all_request_handler locally

 unlock(&AM_lock);

 } else {

 Call monitor_notify_all_request_handler via Active Message

 }

}

Active Messages and handler pseudo-code

Enter request handler: Will first check if the monitor is free and immediately granting the monitor to the requesting process. Otherwise the process is inserted into the trying list and is signaled to wait.

void __monitor_enter_request_handler(void *token, tic_monitor_t *mon,

 Box box, Process proc) {

 if (mon->proc == NO_PROC) {

 mon->proc = proc;

 mon->box = box;

 /* Send reply, which will set waiting_for_monitor = GRANTED */

 if (running_local) { /* Call reply handler directly */

 send monitor_enter_reply_handler locally

 } else { /* Send reply via AM */

 send monitor_enter_reply_handler via Active Message

 }

 } else { /* Process must wait for the monitor */

 insert_try_queue(mon, box, proc);

 if (running_local) { /* Call reply handler directly */

 Call monitor_enter_reply_handler locally

 } else { /* Send reply via AM */

 Call monitor_enter_reply_handler via Active Message

 }

 }

}

Enter Reply handler: Signal process only if granted (process already knows if it is waiting).

void __monitor_enter_reply_handler(void *token, int value, Process proc) {

 if (value != WAIT)

 GetProcess(proc)->waiting_for_monitor = GRANTED;

}

Exit Request handler: Removes current owner from the monitor giving ownership to the next process on the trying list. Sends the new owner’s process ID and box to the requesting process.

void __monitor_exit_request_handler(void *token, tic_monitor_t *mon,

 Box box, Process proc) {

 /* Does the process own it? */

 if (mon->box == box && mon->proc == proc) {

 signal_try_queue(mon);

 if (running_local) { /* Reply with the next process to get the monitor */

 Call monitor_exit_reply_handler locally

 } else {

 Call monitor_exit_reply_handler via Active Message

 }

 }

}

Exit Reply handler: Signal the requesting process that it no longer owns the monitor and that it should signal process “signal_proc” on box “signal_box” (if exists) has received the monitor.

void __monitor_exit_reply_handler(void *token, Process proc,

 Process signal_proc, Box signal_box) {

 GetProcess(proc)->signal_box = signal_box;

 GetProcess(proc)->signal_proc = signal_proc;

}

Signal Request handler: Procedure called to signal process proc has received the monitor.

void __monitor_signal_request_handler(void *token, Process proc) {

 GetProcess(proc)->waiting_for_monitor = GRANTED;

 if (running_local) { /* Reply to the signaller */

 Call monitor_null_reply_handler locally

 } else {

 Call monitor_null_reply_handler via Active Message

 }

}

Wait Request handler: Procedure will insert the process into the monitors’ waiting list, which it will remain until a notify or cancel wait has been issued.

void __monitor_wait_request_handler(void *token, tic_monitor_t *mon,

 Box box, Process proc) {

 /* Does the process own it? */

 if (mon->box == box && mon->proc == proc) {

 insert_wait_queue(mon, box, proc);

 signal_try_queue(mon);

 if (running_local) { /* Reply with the next process to get the monitor */

 Call monitor_wait_reply_handler locally

 } else {

 Call monitor_wait_reply_handler via Active Message

 }

 }

}

Wait Reply handler: As with monitor exit, the requesting process will signal the next process in line to receive the monitor.

void __monitor_wait_reply_handler(void *token, Process proc,

 Process signal_proc, Box signal_box) {

 GetProcess(proc)->signal_proc = signal_proc;

 GetProcess(proc)->signal_box = signal_box;

}

Notify Request handler: Procedure will simply remove one process from the waiting list and append that process to the trying list.

void __monitor_notify_request_handler(void *token, tic_monitor_t *mon) {

 signal_wait_queue(mon);

 if (running_local) { /* Call reply handler directly */

 Call monitor_null_reply_handler locally

 } else { /* Send reply via AM */

 Call monitor_null_reply_handler via Active Message

 }

}

Notify All Request handler: Procedure will append the waiting list to the trying list.

void __monitor_notify_all_request_handler(void *token, tic_monitor_t *mon,

 Box box, Process proc) {

 broadcast_wait_queue(mon);

 if (running_local) { /* Call reply handler directly */

 Call monitor_notify_reply_handler locally

 } else { /* Send reply via AM */

 Call monitor_notify_reply_handler via Active Message

 }

}

Cancel Wait Request handler: Procedure will move process “proc” from the waiting list to the trying list. It is possible for process “proc” to already be on the trying list or to already own the monitor. These cases are checked and handled. If the monitor is free, no other process owns it, then it is guaranteed that the waiting process was on the waiting list and is immediately granted ownership of the monitor (this corresponds to the first block of code after the first if statement).

void __monitor_cancel_wait_request_handler

(void *token, tic_monitor_t *mon, Box box, Process proc) {

 int wait_canceled = cancel_waiting_proc(mon, proc);

 if (wait_canceled)

insert_try_queue(mon, box, proc);

 if (mon->proc == (Process)-1 && mon->tryingProcs != NULL) {

 signal_try_queue(mon);

 ASSERT(mon->proc == proc);

/* Send reply, which will set waiting_for_monitor = GRANTED */

 if (running_local) {
/* Call reply handler directly */

__monitor_enter_reply_handler(NULL, GRANTED, proc);

 } else {

/* Send reply via AM */

TI_AM_Reply2(token, __MON_ENTER_RH, GRANTED, proc);

 }

 } else {
/* Process must wait for the monitor */

 if (running_local) {
/* Call reply handler directly */

__monitor_enter_reply_handler(NULL, WAIT, proc);

 } else {

/* Send reply via AM */

TI_AM_Reply2(token, __MON_ENTER_RH, WAIT, proc);

 }

 }

}
BOX A

BOX local to the monitor

Owner: A

Queue: B

BOX B

Monitor exit

(release monitor)

2. Reply handler

 (signal B)

3. Monitor signal

(You now own the monitor)

4. Signal reply

 (NULL)

