
Adaptive Mesh Refinement in Titanium

Tong Wen and Phillip Colella
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

� twen, colella �@lbl.gov

Abstract

In this paper, we evaluate Titanium’s usability as a
high-level parallel programming language through a case
study, where we implement a subset of Chombo’s function-
ality in Titanium. Chombo is a software package applying
the Adaptive Mesh Refinement methodology to numerical
Partial Differential Equations at the production level. In
Chombo, the library approach is used to parallel program-
ming (C++ and Fortran, with MPI), whereas Titanium is a
Java dialect designed for high-performance scientific com-
puting. The performance of our implementation is studied
and compared with that of Chombo in solving Poisson’s
equation based on two grid configurations from a real ap-
plication. Also provided are the counts of lines of code from
both sides.

1. Introduction

Since first developed by Berger and Oliger [6] for hyper-
bolic Partial Differential Equations (PDEs), the Adaptive
Mesh Refinement (AMR) methodology has been success-
fully applied to numerical modeling of a variety of physical
problems that exhibit multiscale behavior ([7] [4] [2] � � �).
Here, the multiscale behavior is characterized by localized
large derivatives of the solution. For example, solutions to
Poisson’s equation can have this type of variation due to lo-
cal concentration of charges or boundary conditions.

In finite difference calculations, truncation errors are in the
form of

����������

where�� is the mesh size, ���� is a �����-order differen-
tial operator, and � is the solution. If � is not smooth, then a
small�� is required so as to resolve the solution in the nec-
essary accuracy. For the above class of problems, uniformly
refining the mesh to meet the resolution requirement would

be a waste of computational resources, because high resolu-
tion is not needed everywhere. In AMR, computational ef-
fort is adjusted locally to maintain a uniform level of accu-
racy throughout the problem domain. That is, areas of in-
terest are covered with finer grid patches than the surround-
ing regions. For time-dependent problems, the finer meshes
are also advanced with a smaller time step. By saving com-
putational resources, AMR allows bigger and harder prob-
lems to be attacked.

The idea of AMR sounds straightforward, but it is chal-
lenging to implement it efficiently. One aspect of the diffi-
culty comes from the irregular data access and computation
in AMR algorithms. In our approach to AMR, regions at the
same refinement level are covered by a union of rectangu-
lar grids. Here, the refinement level � ranges from � (coars-
est) to �max (finest). Grids at level ��� are embedded recur-
sively inside the union of the grids at level �. Having such a
nested hierarchy of grids introduces interfaces not only be-
tween grids at the same refinement level but also between
those from two adjacent levels. Note that in practice there
can be thousands of grids at one level. Matching the nu-
merical solution at these artificial boundaries is the source
of the irregular data access and computation, and paralleliz-
ing these irregular operations is especially challenging.

As a simulation goes on, the resolution requirement for the
evolving solution may change from time to time. If there
is such a change, grids are regenerated accordingly. Recon-
structing the grid hierarchy is not trivial when AMR compu-
tation is performed in parallel, because load balancing has
to be done at runtime. AMR programs are hard to write not
only because of the challenges described above, but also be-
cause complicated are the control structures of AMR itera-
tions and the interactions between levels of refinement. In
this paper, as an example we introduce an AMR multigrid
algorithm for second-order elliptic PDEs.

In order to exploit modern software design principles, par-
ticularly object-oriented programming, two AMR software
packages CCSE Applications Suite and Chombo have been

developed in both C++ and Fortran at Lawrence Berkeley
National Laboratory (LBNL), which has been at the fore-
front of AMR-algorithm designs and applications. The ben-
efit of combining these two programming languages is ob-
vious. Firstly, multidimensional arrays are built-in types in
Fortran, while they must be provided as a class library in
C++. Although the performance of C++ programs has been
improved during the last decade, it is still hard for a C++
multidimensional array library to outperform Fortran. Over-
all, performance is the primary goal here. On the other hand,
Fortran does not have some features that C++ has such as
template and inheritance, which provide tremendous poten-
tial for code reuse and generic programming. In the above
two implementations, the regular operations on arrays are
written in Fortran, while the irregular ones are written in
C++. However, the price to pay for using a mixture of pro-
gramming languages is that code maintenance is high and
debugging is difficult.

New languages have been developed to challenge the pop-
ular library approach to parallel programming. Among them
is Titanium, a Java dialect designed for high-performance
scientific computing [32]. Titanium supports multidimen-
sional arrays and an explicitly parallel SPMD (single pro-
gram, multiple data) model of computation with a global
address space. Using Java as its base makes Titanium easy
to learn, meanwhile providing users with modern program-
ming technologies. Titanium compiler is designed to trans-
late Titanium into C for portability and economy. With the
global address space, data residing on different processors
can be accessed transparently by Titanium processes. In
Titanium, one-sided communications are supported at lan-
guage level. Titanium programs run on both shared-memory
and distributed-memory architectures.

The goal of this paper is to evaluate through a case study
Titanium’s usability as a parallel programming language for
scientific applications. Following Chombo’s design of soft-
ware architecture, we build in Titanium the infrastructure
for AMR applications and an elliptic PDE solver above it.
Then, our implementation is compared with its Chombo
counterpart in both performance and expressiveness.

2. A case study: an AMR elliptic PDE solver
in Titanium

As a case study of Titanium’s usability, we implement
a subset of Chombo in Titanium, which includes basic
AMR data structures and operations, and a solver for el-
liptic PDEs. The reason to choose the elliptic solver is that
this class of problems, particularly Poisson’s equation, are
among the most common PDEs encountered in various ar-
eas of science and engineering. Meanwhile, its implemen-
tation represents the difficulties described above. We fol-

low Chombo’s design of software architecture with modifi-
cations to suit Titanium.

2.1. Basic data structures and operations

In this paper, we are interested in solving equations

�� � � in �� (2.1)

where � is an elliptic partial differential operator and � is a
bounded, open domain. Particularly in our test problems, �
is the Laplacian operator, that is, � � �, subject to Dirich-
let boundary condition

� � 	 on
�� (2.2)

As a matter of notation, for each refinement level �, we de-
note by �� the union of rectangular grids at this level. Let
�� and � � be the discretized versions of � and � defined on
��. In this paper, superscripts are exclusively used as in-
dexes of refinement levels. Thus, �� is the discretized ver-
sion of � at level �. Note that as explained later, the evalua-
tion of �� for instance on �� involves not only �� itself but
also ���� and ���� (assuming � � � � �max).

The most fundamental data structures in our implemen-
tation are a metadata class and a data class. The metadata
class contains the set of rectangular grids at one refinement
level along with their processor assignments. In Titanium,
a rectangular grid is represented by a built-in type RectDo-
main, and another built-in type Point is used to index each
cell in a grid. In Figure 1, an example of two adjacent lev-
els of grids is given for the two dimensional case. In this ex-
ample, an object of the metadata class for the coarse level
contains two RectDomains, while one for the fine level con-
tains three. The metadata class also have methods that work
on the grids it owns, such as coarsen and refine.

The data class is defined on the metadata class. It con-
tains the data built on the blueprint provided by the meta-
data class. Typically, an object of the data class contains a
union of multidimensional Titanium arrays constructed on
the grids that are described in its defining metadata-class
object, and these arrays are distributed according to the pro-
cessor assignments. Each local copy of the object has trans-
parent access to all the arrays it has no matter where they
live. As mentioned before, Titanium supports multidimen-
sional arrays as built-in types. In our implementation, for
example, �� and � � are objects of the data class.

Both physical and artificial boundary conditions are dealt
with ghost cells. The ghost cells of a grid are a layer of cells
surrounding it. The size of this layer depends on what nu-
merical schemes are used. In this paper, its size is one every-
where. For data-class objects that are operands of the dis-
cretized operators��, they must have ghost cells. An impor-
tant method of the data class is exchange, which exchanges

coarse grid 0 (p0)

coarse grid 1 (p1)

fine grid 1 (P1)

fine grid 2
(P1)

fine grid 0 (P0)

Figure 1. Two adjacent levels of grids are
shown in this example for the two dimen-
sional case. There are two coarse grids at the
coarse level and three fine grids at the fine
level. For each grid, the number in parenthe-
sis represents the processor it is assigned
to. The dotted squares in each grid are the
cells it contains. The refinement ratio be-
tween these two levels is 2. In this paper, all
AMR algorithms are cell-centered.

the values of two adjacent arrays (at the same refinement
level) at their grid boundary by copying them to the corre-
sponding ghost cells. This copy operation is performed by
the copy method of Titanium array. Given two Titanium ar-
rays
�� and
��,
��������
��� copies the contents
of the elements of
�� into the elements of
�� that have
the same indexes, where
�� and
�� can belong to differ-
ent processors. For our Poisson solver, a large portion of the
communication time is consumed by the exchange method.

The basic AMR data structures are implemented in ����
lines of Titanium code in contrast to around 	
��� lines of
code in Chombo. Note that we do not include comments in
the lines of code. Even after consideration of the simplifica-
tions we have made and the limitation of the lines of code
as a productivity measure, there is still a significant save in
programming effort for using Titanium.

Frequently used operations on data-class objects are im-
plemented as methods of classes. Some of these operations
are used to match the solution at the grid interfaces be-
tween two adjacent refinement levels, while others are used
to pass information from one level to another. One method
we want to mention is CFInterp, which determines the val-
ues at ghost cells with quadratic interpretations. This opera-
tion is a good example of the ones that involve both irregu-

lar data access and computation. The basic AMR operations
are implemented in ���� lines of Titanium code, whereas
the corresponding part in Chombo has around �
�� lines of
code.

2.2. An AMR multigrid algorithm

We use the same multigrid algorithm for elliptic problems
as Chombo does, which is described at high level in Fig-
ures 2 to 4. The goal here is to provide readers an over-
all picture of this algorithm and establish the notations for
our later discussions. For its details, please refer to [21] and
Chombo’s design documents available at its website [12].

Note that the meaningful parts of �� for � � �� � � � � �max

are those whose domains are not covered by any finer grids.
They together serve as the numerical solution to (2.1) on
the grid hierarchy ��� � � � ���max . Hereafter, we denote this
composite solution by �comp, and let �comp be the corre-
sponding discretized operator.

At each level �, on the inner regions of � � that are away
from
���� (if it exists) �� is simply the usual ��� � ��-
point stencil, where� is the space dimension. In the bound-
ary regions (both
�� and
����) �� addresses the various
boundary conditions using the corresponding ghost cells.
Since these ghost cells may be filled in with additional infor-
mation from either level ����� or level �����, at most three
levels of data are needed to evaluate �� on ��. In the multi-
grid algorithm described here, a simplified version of � � de-
noted by ��

nf is also used, where it is assumed that there is
no finer levels above �.

To illustrate how the multigrid algorithm iterates through
the refinement levels, shown in Figure 5 is a simple sketch
of one multigrid V-cycle on a three-level grid hierarchy. The
iteration starts at the finest level on the way down to the
coarsest level. After reaching the bottom, it goes back to the
top level. The arrows in this diagram show how informa-
tion flows through refinement levels. Note that the small V-
cycles are from procedure mgRelax, which introduces inter-
mediate refinement levels. This AMR multigrid algorithm
for Poisson’s equation is implemented in �
�� lines of Ti-
tanium code, where ��
 of our code is reusable for other
elliptic PDE solvers.

3. Test problems and preliminary profiling re-
sults

Our implementation has covered almost all Titanium’s fea-
tures including those added to Java such as templates, im-
mutable classes, and zone-based memory management. In
this section, we study the performance of our elliptic solver
in solving Poisson’s equation on a cubic domain subject to

procedure AMRSolve():
�comp �� � comp � �comp��comp�
while (���comp�� � ���� comp��)

AMRVCycle(�max)
�comp �� � comp � �comp��comp�

end while

procedure AMRVCycle(level �):
if (� � �max) then �� �� � � � ��

nf��
�� �����

if (� � �) then
��

copy �� �� on ��

�� �� � on ��

mgRelax(��� ��� 	�)
�� �� �� � ��

���� �� � on ����

���� ��
��	�
���� � ��
nf��

�� ������ on �����
��

���� �� � ��� � ������comp� on ���� � �����
��

AMRVCycle(� � �)
�� �� �� � ����	������������

�� �� �� � ��
nf��

�� �����
Æ�� �� � on ��

mgRelax(Æ��� ��� 	�)
�� �� �� � Æ��

�� �� ��
copy � ��

else
solve ��

nf��
�� � �� on ��.

�� �� �� � ��

end if

Figure 2. Pseudo-code description of the
AMR multigrid algorithm. Given ���� and ��,
����������� passes the value of �� down to
refinement level ��� �� via averaging, while
�	
������
������� passes the value of ����

up to refinement level � via piecewise con-
stant interpolation. Here, ������� coarsens
the grids in �� down to level ��� �� by a ra-
tio of ��.

Dirichlet boundary condition, that is,�
�� � � on ��

� � 	 in
��

This problem is discretized using two grid configurations
from a real application. Some of the timing results are com-
pared against those of Chombo, which we use as bench-
marks. Our study is based on two platforms where the same
version of code is used and compiled with the Titanium
compiler of version 2.573.

The two grid configurations are described in Figure 6,
which are from an incompressible fluid flow problem [23].
The small configuration is for the case where the problem
domain contains two vortex rings, while the large one is for

procedure mgRelax(�� � �� �)
�

for � = 1, . . . , NumSmoothDown
GSRB(�� � ��)

end for
if �	 � �� then

Æ� �� �

�� ��
��	�
���� � ��
nf��

� � �� � ���
mgRelax(Æ�� ��� 	��)
�� �� �� � ����	�������Æ��
for � = 1, . . . , NumSmoothUp

GSRB(�� � ��)
end for

end if
�

Figure 3. Recursive relaxation procedure.
Here the refinement ratio between level
 and
level � is 2.

procedure GSRB(�� � ��)
�

�� �� �� � ����
nf��

� � �� � ������ on ��
BLACK

�� �� �� � ����
nf��

� � �� � ������ on ��
RED

�

Figure 4. Gauss-Seidel relaxation with red-
black ordering. Here � is the relaxation pa-
rameter.

the case where there is one vortex ring. We use the small
configuration to test the serial performance of our solver
and the large one to test its parallel performance.

To make it easy to compare with Chombo, we set � � �,
	 � �, and the initial guess �comp

init � � for the two test
cases. But, this simplification does not reduce the general-
ity of the numerical computations involved. We choose the
convergence criteria to be

��comp�� � �������comp
init ���

The residual norms from each iteration are listed in Ap-
pendix. Note that not all the operations in the Titanium code
are implemented in the same way as Chombo does. For ex-
ample, at the base level the two sides use different numeri-
cal methods to solve the problem

��nf��
�� � �� on ���

which however is not performance critical. Therefore, we
do not expect that the residual norms from both sides match
exactly.

L2

L1

L0

2

2

2

2

re
fi

ne
m

en
t

le
ve

l

time

persistent data

transient data

Figure 5. A simple sketch of one multigrid V-
cycle. There are three levels of refinement in
this grid hierarchy. The refinement ratio is 4
between two adjacent levels. Here, the direc-
tion of data flow is indicated by arrows. The
small V-cycles are contributed by the mgRe-
lax subroutine, which itself is a multigrid al-
gorithm.

To separate the computation-intensive part of AMRSolve
from those that involve either communication or irregular
computation, we do not include in GSRB the operations
that fill in the ghost cells. Most of these irregular opera-
tions are performed by the exchange and CFInterp meth-
ods, which are timed separately. The CFInterp method does
two kinds of calculation, one does not involve communica-
tion while the other one does. Hereafter, we denote the first
case by CFInterp1 and the second one by CFInterp2. All
the timing results in this paper are in seconds. In the paral-
lel mode, the maximum running time of each operation is
reported.

The serial performance of our solver is tested on an Intel
Pentium 4 workstation. The timing results from both sides
along with flop counts are listed in Table 1. The mesh size
is ��	� at the base level. We can see that the serial per-
formance of the Titanium solver (��
 faster) matches very
well that of Chombo.

The parallel performance is studied on an
IBM SP RS/6000 supercomputer named Seaborg
(http://www.nersc.gov/nusers/resources/SP/).
First, we run the small test problem within one node
using different number of processors. The timing re-
sults and the speedup factors are shown in Figure 7.
We can see that the Titanium solver scales almost lin-
early within one node on Seaborg. The scalability of GSRB
is perfect because all the computations involved are regu-
lar and local. Since exchange is communication intensive,
it does not scale as well as GSRB.

the small configuration the large configuration
number number number number

level of grids of cells level of grids of cells
0 1 32768 0 64 2097152
1 106 279552 1 129 3076096
2 1449 2944512 2 3159 61468672

Figure 6. Two grid configurations. Each box
here represents a three dimensional grid. At
the base level, the union of the grids fully
cover the problem domain. There are totally
��� and ���� cells at the base levels of the
small and large configurations respectively.
The refinement ratios between two adjacent
levels are 4 for both cases.

The large test problem is then distributed across multiple
nodes. On each node, �� processors are used. The timing re-
sults are listed in Table 2. Here, the mesh size is ����� at the
base level. We can see that the exchange method does not
scale with the number of nodes. It becomes the bottleneck of
the overall scalability when more than two nodes are used.
The reason is that the source and destination regions of ex-
change are non-contiguous in linear storage. This fact leads
to high overhead of Titanium array’s copy method used in
both exchange and CFInterp2 for communication. One pos-
sible solution is to implement a new exchange method that
does packing and unpacking as Chombo does to reduce the
cost of communication. Another way is to improve the per-
formance of the copy method. People at Titanium group is
investigating more efficient packing in the GASNet com-
munication system in order to achieve this goal.

In Table 3, we compare the two solvers for the case where
two nodes are used. The first column of this table is copied
from Table 2. For this case, the Titanium AMRSolve (��

slower) is still able to match its Chombo counterpart. One
observation here is that the Titanium GSRB is significantly

Titanium Chombo
AMRSolve 52.15 57.47

GSRB 12.98 11.64
exchange 11.25 17.31
CFInterp1 5.91 4.19
CFInterp2 4.97 4.31

flops (billion) 9.45 10.01

Table 1. Serial performance. This comparison
is conducted on an Intel Pentium 4 (2.8 GHz)
workstation based on the small test prob-
lems. The timing results are in seconds.

the scalability of the scalability of
AMRSolve GSRB and exchange

1 2 4 6 8
0

1

2

3

4

5

6

7

8

number of processors

sp
ee

du
p

fa
ct

or

AMRSolve

1 2 4 6 8
0

1

2

3

4

5

6

7

8

9

10

number of processors

sp
ee

du
p

fa
ct

or

GSRB
Exchange

number of
processors 1 2 4 6 8
AMRSolve 138.4 74.63 39.31 26.90 20.62

GSRB 33.85 17.11 8.38 5.21 3.57
exchange 27.66 14.26 8.12 5.45 4.11
CFInterp1 14.33 7.13 2.88 1.51 1.00
CFInterp2 15.27 9.33 4.90 3.41 2.89

Figure 7. The scalability of the small test
problem on Seaborg. The timing results are
in seconds.

slower than the Chombo GSRB which is implemented in
Fortran. This difference in performance is related to the dif-
ferent orders in which the two GSRBs iterate through the
red/black cells during the GSRB update. It turns out that
the Chombo GSRB ordering is more efficient, because it
provides better locality of the data. In the second column of
this table, listed are the timing results of the Titanium code
where in GSRB the red/black cells are updated in the same
order as in Chombo. By doing so, the performance of the Ti-
tanium GSRB is improved by ��
, which now is close to
that of its Chombo counterpart.

number of nodes 1 2 3
AMRSolve 204.7 134.6 116.7

GSRB 58.39 29.46 19.18
exchange 42.60 41.32 46.23
CFInterp1 10.05 5.20 3.78
CFInterp2 12.53 10.03 9.87

Table 2. The scalability of the large test prob-
lem on Seaborg. On each node, 14 proces-
sors are used. Here, the Titanium code is
compiled in 64-bit mode. The timing results
are in seconds.

Titanium Chombo
old GSRB Chombo GSRB
ordering ordering

AMRSolve 134.6 130.0 113.3

GSRB 29.46 25.34 22.71
exchange 41.32 40.56 37.12
CFInterp1 5.20 5.15 6.17
CFInterp2 9.87 10.10 7.97

flops (billion) 172.9 171.0

Table 3. Parallel performance. This compari-
son is conducted on Seaborg based on the
large test problem, where two nodes and to-
tally 28 processors are used. The first column
of this table is copied from Table 2. In the sec-
ond column, listed are timing results where
in the Titanium GSRB the red/black cells are
updated in the same order as in Chombo.
Here, the Titanium code is compiled in 64-bit
mode. The timing results are in seconds.

4. Conclusions and future work

Titanium is a high-level parallel programing language for
scientific applications, which supports modern software de-
sign principles. It is easy to learn and to use this language.
From this case study, we can see that writing AMR appli-
cations in Titanium requires much less programming effort
than in other languages. Meanwhile, Titanium has potential
to provide high performance for this class of applications,
which is comparable with that of production-level packages
such as Chombo.

As a product of this project, several improvements have
been done to Titanium. Now, templates are fully supported,
and a more efficient rectangular-domain library has been de-
veloped. Our next task is to improve the scalability of ex-

the small test problem
iteration Titanium Chombo

initial 6144.0 6144.0
1 0.2727 0.2728
2 0.2538 0.2538
3 0.0091 0.0092
4 3.706E-04 3.580E-04
5 5.093E-06 4.748E-06
6 2.090E-07 1.570E-07

the large test problem
iteration Titanium Chombo

initial 9.830E04 9.830E04
1 4.169 4.169
2 1.290 1.277
3 0.0222 0.0219
4 1.046E-03 1.039E-03
5 1.761E-05 2.128E-05
6 7.893E-07 7.367E-07

Table 4. The infinity norms of the residuals
from the two test problems.

change. A more detailed comparison between our Titanium
implementation and its Chombo counterpart is also interest-
ing. The ultimate goal is to provide an environment in Ti-
tanium where high-performance AMR applications can be
developed easily.

Acknowledgments

This project is supported by Lawrence Berkeley National
Laboratory. Our thanks go to all the members of Titanium
group at University of California, Berkeley for their sup-
port and weekly discussions. Among them, we especially
want to thank Dan Bonachea, Jimmy Su, and Amir Kamil
for their valuable suggestions. We also want to thank Noel
Keen at Lawrence Berkeley National Laboratory for provid-
ing profiling results of Chombo.

Appendix

In Table 4, listed are the infinity norms of the residu-
als from the two test problems. Our implementation can be
downloaded at

http://seesar.lbl.gov/anag/staff/

wen/download.html.

References

[1] Ann Almgren, Thomas Buttke, and Phillip Colella. A fast
adaptive vortex method in three dimensions. Journal of com-
putational Physics, 113(2):177-200, 1994.

[2] Ann Almgren, John Bell, Phillip Colella, Louis Howell,
and Michael Welcome. A conservative adaptive projec-
tion method for the variable density incompressible Navier-
Stokes equations. Journal of computational Physics, 42:1-
46, 1998.

[3] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der
Vorst. Templates for the Solution of Linear Systems: Build-
ing Blocks for Iterative Methods. SIAM, Philadelphia, PA,
1994.

[4] John Bell, Marsha Berger, Jeff Saltzman, and Mike Wel-
come. Three dimensional adaptive mesh refinement for hy-
perbolic conservation laws. Journal of Scientific Computing,
15(1):127-138, 1994.

[5] J. B. Bell. AMR for low Mach number reacting flows. LBNL
Report LBNL-54351, Proceedings of the Chicago Workshop
on Adaptive Mesh Refinement Methods, 2003.

[6] M. J. Berger and J. Oliger. Adaptive mesh refinement for hy-
perbolic partial differential equations. Journal of computa-
tional Physics, 53:484-512, 1984.

[7] M. J. Berger and P. Colella. Local adaptive mesh refinement
for shock hydrodynamics. Journal of computational Physics,
82(1):64-84, 1989.

[8] M. J. Berger and I. Rigoutsos. An algorithm for point clus-
tering and grid generation. IEEE Transactions Systems, Man
and Cybernetics, 21(5):1278-1286, 1991.

[9] William L. Briggs, Van Emden Henson, and Steve F. Mc-
Cormick. A Multigrid Tutorial, Second Edition. SIAM,
Philadelphia, PA, 2000.

[10] J. Cary, S. Shasharina, J. Cummings, J. Reynders, and P.
Hinker. Comparison of C++ and Fortran 90 for object-
oriented scientific programming. Report No. LA-UR-96-
4064, Los Alamos National Laboratory, 1996.

[11] CCSE Applications Suite website:
http://seesar.lbl.gov/CCSE/Software/
index.html. Center for Computational Sciences and En-
gineering (CCSE), Lawrence Berkeley National Laboratory,
Berkeley, CA.

[12] Chombo website: http://seesar.lbl.gov/ANAG/
software.html. Applied Numerical Algorithms Group
(ANAG), Lawrence Berkeley National Laboratory, Berkeley,
CA.

[13] P. Colella, M. Dorr, and D. Wake. Numerical solution of
plasma-fluid equations using locally refined grids. Journal
of computational Physics, 152:550–583, 1999.

[14] W. Y. Crutchfield and M. Welcome. Object-oriented imple-
mentation of adaptive mesh refinement algorithms. Scientific
Programming, 2(4):145–156, 1993.

[15] A. L. Garcia, J. B. Bell, W. Y. Crutchfield, B. J. Alder. Adap-
tive mesh and algorithm refinement. Journal of computa-
tional Physics, 154:134-155, 1999.

[16] R. Hornung and J. A. Trangenstein. Adaptive mesh refine-
ment and multilevel iteration for flow in porous media. Jour-
nal of computational Physics, 136(2):522–545, 1997.

[17] L. H. Howell and J. B. Bell. An adaptive-mesh projection
method for viscous incompressible flow. SIAM Journal of
Scientific Computing, 18(4):996-1013, 1997.

[18] L. H. Howell, R. B. Pember, P. Colella, J. P. Jessee, and W. A.
Fiveland. A conservative adaptive-mesh algorithm for un-
steady, combined-mode heat transfer using the discrete ordi-
nates method. Numerical Heat Transfer, Part B: Fundamen-
tals, 35:407–430, 1999.

[19] J. P. Jessee, W. A. Fiveland, L. H. Howell, P. Colella, and
R. B. Pember. An adaptive mesh refinement algorithm for
the radiative transport equation. Journal of computational
Physics, 139(2):380–398, 1998.

[20] R. I. Klein, J. B. Bell, R. B. Pember, T. Kelleher. Three
dimensional hydrodynamic calculations with adaptive mesh
refinement of the evolution of Rayleigh Taylor and Richt-
myer Meshkov instabilities in converging geometry: multi-
mode perturbations. Proceedings of the 4th International
Workshop on Physics of Compressible Turbulent Mixing,
Cambridge, England, March 1993.

[21] D. F. Martin and K. L. Cartwright. Solving Poisson’s equa-
tion using adaptive mesh refinement. Technical Report
UCB/ERI M96/66, UC Berkeley, 1996.

[22] D. Martin and P. Colella. A cell-centered adaptive projection
method for the incompressible Euler equations. Journal of
computational Physics, 163:271-312, 2000.

[23] D. F. Martin. Draft: Adaptive Mesh Refinement for incom-
pressible Navier-Stokes equations. Applied Numerical Al-
gorithms Group (ANAG), Lawrence Berkeley National Lab-
oratory, Berkeley, CA.

[24] Matthew Tyler Bettencourt. A Block-Structured Adaptive
Steady–State Solver for the Drift–Diffusion Equations. PhD
thesis, Dept. of Mechanical Engineering, Univ. of Califor-
nia, Berkeley, 1998.

[25] D. L. Modiano and E. M. Murman. Adaptive computations
of flow around a delta wing with vortex breakdown. AIAA
Journal, 32(7):1545-1547, 1994.

[26] R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and
M. L. Welcome. An adaptive Cartesian grid method for un-
steady compressible flow in irregular regions. Journal of
computational Physics, 120:278–304, 1995.

[27] R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y.
Crutchfield, W. A. Fiveland, and J. P. Jessee. An adaptive
projection method for unsteady, low Mach number combus-
tion. Combustion Science and Technology, 140:123–168,
1998.

[28] Charles A. Rendleman, Vincent E. Beckner, Mike Lijew-
ski, William Crutchfield, and John B. Bell. Parallelization
of structured, hierarchical adaptive mesh refinement algo-
rithms. Computing and Visualization in Science, 3:147-157,
2000.

[29] E. Steinthorsson, D. Modiano, P. Colella. Computations of
unsteady viscous compressible flows using adaptive mesh re-
finement in curvilinear body-fitted grid systems. NASA tech-
nical memorandum 106704, ICOMP report no. 94-17, 1994.

[30] M. C. Thompson and J. H. Ferziger. An adaptive multi-
grid technique for the incompressible Navier-Stokes equa-
tions. Journal of computational Physics, 82:94-121, 1989.

[31] Titanium website: http://www.cs.berkeley.edu/
projects/titanium/. Titanium Group, Dept. of Com-
puter Science, University of California, Berkeley, CA.

[32] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Lib-
lit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P.
Colella, A. Aiken. Titanium: a high-Performance Java di-
alect. ACM 1998 workshop on Java for high-performance
computing, Stanford, CA, 1998.

