
Array Prefetching for Irregular Array Accesses in Titanium

Jimmy Su and Katherine Yelick
Computer Science Division, University of California at Berkeley

{jimmysu,yelick}@cs.berkeley.edu

Abstract

Compiling irregular applications, such as sparse

matrix vector multiply and particle/mesh methods in a
SPMD parallel language is a challenging problem.
These applications contain irregular array accesses,
for which the array access pattern is not known until
runtime. Numerous research projects have
approached this problem under the inspector executor
paradigm in the last 15 years. The value added by the
work described in this paper is in using performance
modeling to choose the best data communication
method in the inspector executor model. We explore
our ideas in a compiler for Titanium, a dialect of Java
designed for high performance computing. For a
sparse matrix vector multiply benchmark, experimental
results show that the optimized Titanium code has
comparable performance to C code with MPI using the
Aztec library.

1. Introduction

 Irregular array accesses arise in many scientific
applications such as sparse matrix vector multiply and
particle/mesh methods. Figure 1 illustrates a simple
example. A is the data array, and B is the indirection
array. The array access pattern to A is not known until
runtime. When this code is run on a distributed
memory machine, array A can be remote, in which case
reading the elements of A would require
communication. Walker proposed and implemented
the idea of using a precomputed communication
schedule for indirect array accesses to distributed
arrays in a PIC application [18]. His targeted
architecture was a hypercube in a crystalline
environment, where data need to be forwarded by
intermediate processors in order to be transmitted from
the source to destination processor. The idea was
further developed by Berryman and Saltz [5] in a
technique called inspector executor. During program

execution, the inspector examines the data references
made by a processor, and calculates which off-
processor data needs to be fetched and where this data
will be stored once it is received. The executor loop
then uses the gathered data to perform the actual
computation.

for i = 1 to n do
 sum += A[B[i]]
end do
��������	�
�� �
���� � � �
��� ���� � ���� ��� ��� � �� � � �

�

After the inspector phase, the access pattern is

known. In some applications, the communication
pattern is reused multiple times, so the runtime may
spend some time determining an efficient way to
perform the communication. Our experiments show
that the best method for doing this communication is
both application and machine specific. For some
problem sizes, it may even be better to skip the
inspector phase entirely, and simply retrieve the entire
data array.

We explore our ideas in a compiler for Titanium
[19]. Titanium is a dialect of Java designed for high-
performance parallel computing using a SPMD
execution model. It has extensions for scientific
computing, including a multidimensional array
construct that we use in this paper. Our compiler can
automatically apply the inspector executor optimization
to indirect array access code. The generated code is
able to accurately choose the best fetch method during
runtime to perform the data communication using
performance modeling. When the access pattern is
repeated over multiple iterations, further optimizations
such as schedule reuse, buffer reuse, overlap
communication with communication, and overlap
communication with computation are applied to the
code.

To demonstrate the effectiveness of the
optimizations, we develop a sparse matrix vector
multiply benchmark in Titanium, and compare the
performance of the optimized Titanium code to C code

with MPI using the Aztec library [14]. Titanium code
is written at a higher level of abstraction and is more
concise, yet their performance is comparable.

2. Related Work

The inspector executor technique was developed by
Berryman and Saltz. The PARTI runtime library [1]
and its successor CHAOS [12] provided primitives for
application programmers to apply the inspector
executor optimization on the source level. The same
research group provided the dataflow framework to
determine where communication schedule can be
generated, where communication operations are placed,
and when schedules can be combined [7]. As an
experimental result, they carried out the optimizations
that would have been suggested by the dataflow
framework manually. The ARF [16] and KALI [9]
compilers were able to automatically generate inspector
executor pairs for simply nested loops. Slicing analysis
was developed to extend the inspector executor
paradigm to multiple level of indirection [4]. More
recently, the inspector executor technique was used to
develop runtime reordering of data and computation
that enhance memory locality in applications with
sparse data structures [13].

There have been numerous research works in the
area of communication scheduling. Chakrabarti et al.
[3] implemented an algorithm for optimizing
communication schedules across loops in a global
manner in the HPF compiler. Dongarra et al. [15] gave
techniques for performance modeling collective
communications.

The work presented in this paper extends the
inspector executor line of research by looking at the
problem of selecting the best communication method.
Our work is done in the context of a high level
language without explicit communication. The choice
is both application and machine specific. Our compiler
is able to automatically generate code that can
accurately choose the best communication method
during runtime based on performance modeling.

3. Titanium

 Titanium is a dialect of Java, but does not use the
Java virtual machine model. Instead, the end target is
assembly code. During compilation, Titanium code is
translated into C code, and then the C compiler
compiles the generated C code. C is used as an
intermediate step for portability. Titanium runs on a
wide range of platforms, including uniprocessors,
shared memory multiprocessors, distributed-memory

clusters of uniprocessors or SMPs (CLUMPS), and a
number of specific supercomputer architectures (Cray
T3E, IBM SP, Origin 2000).

3.1. Memory Consistency Model

 Titanium inherits many features of Java, one of
which is the Java memory consistency model [6].
Titanium’s interpretation of the Java memory
consistency model is defined in the language
specification [8]. Here are some informal properties of
the Titanium model.
• Locally sequentially consistent: For a single

processor, all reads and writes to a given memory
location must appear to occur in exactly the order
specified.

• Globally consistent at synchronization events: At a
global synchronization event, such as a barrier, all
processors must agree on the values of all the
variables. At a non-global synchronization event,
such as entry into a critical section, the processor
must see all previous updates made using that
synchronization event.

 The first property implies that a processor must be
able to read its own writes. If a processor writes to
array elements that have been prefetched, subsequent
reads by that processor on those array elements must
return the new value. The second property makes data
prefetched prior to a synchronization point unusable
after that synchronization point. The prefetched array
elements may have changed, and reads after the
synchronization point must reflect those changes.

3.2. Foreach Loop

 Our transformation targets the built-in foreach loops
in Titanium. A foreach loop has the form of
foreach (p in D) S, where the iteration space D is a
rectangular set of positive integers, and S any sequence
of statements. The loop’s semantics specifies that the
body, S, be executed |D| times with p bound to each
element of D in each iteration, but no particular
execution order is required. The foreach loop is a local
loop. Titanium compiler does extensive analysis and
optimizations for foreach loops [11]. The relevant
analysis for our purposes is dominator analysis for
foreach loops. The classical dominator analysis is used
to determine the following:
• Whether a foreach loop is a full domain loop or a

partial domain loop. A full domain loop executes
on every iteration and cannot be cut short except
by a fatal error.

• Which array accesses appear on every iteration of
the loop.

4. Inspector Executor in Titanium

4.1. Compile Time Transformations

The first step is to identify prefetch candidates for
indirect array accesses A[B[i]]. Below is the list of the
conditions that the compiler checks for:
• The array access appears in full domain foreach

loops.
• The array access appears on every iteration of the

loop.
• B and B[i] do not change inside of the loop.
• A does not change inside of the loop. The reason

that A[i] can change is that the conflicts can be
resolved by merging against the prefetched data in
runtime when A[i] is written to.

• There are no synchronization points inside of the
foreach loop, since the memory model requires
memory to be globally consistent at a
synchronization point.

 After identifying the prefetch candidates, the
compiler performs the inspector executor
transformation. In the inspector phase, the array
address for each A[B[i]] is computed. The computed
values are stored in an index array. After the inspector
phase, a fetch method is chosen to retrieve the remote
data into a local buffer. More details on the choice of
the fetch method are presented in the next section. In
the executor loop, values for each A[B[i]] are read out
of the local buffer.

4.2. Runtime Selection of Fetch Methods

With a set of indirect array accesses to a remote
array, there are several options for performing the data
communication. The options are listed below:
• Gather method: use a gather operation to retrieve

all the needed elements. The gather operation is a
one-sided operation that copies selected elements
from a remote array into a local buffer.

• Bound method: use a bulk read operation to
retrieve a bounding box that contains the needed
elements.

• Bulk method: use a bulk read operation to retrieve
the entire remote array.

The three methods require different amount of set
up work:

• The gather method needs to run the inspector
phase to translate all the indirect array accesses
into remote addresses.

• The bound method needs to run the inspector
phase to compute the bounding box that contains
all the needed elements.

• The bulk method does not need to run the
inspector phase.

We define the best fetch method as the method that
takes the least amount of time to complete. Our
experiment shows that there is no best method for the
general case. The choice is both application and
machine specific. The application determines the size
of the array, number of accesses to that array, and the
size of the bounding box. The machine gives different
latencies for completing a bulk read operation and a
gather operation. Without help from the compiler, the
application programmer would need to make this
decision at the application level, and have three
different branches that handle the three fetch methods.
This makes the application code much less readable
and non-portable. We would like to have the compiler
generate code that can choose the best fetch method at
runtime based on performance modeling numbers
collected on the particular machine.

The total time of a fetch method consists of two
parts: the local computation that runs the inspector
phase and the communication that actually retrieves the
elements from the remote processor. We develop a
performance model to account for these two costs. For
modeling the local computation, we empirically
measure the cost for computing for a single array
access in the inspector phase. For modeling
communication, we measure the latencies of the gather
and bulk read operation with different processor
configurations. These empirical measurements only
need to be done once when the compiler is built on a
particular machine. When an application runs, it
simply looks in a table containing this data to make a
decision on which fetch method to use.

The decision process for choosing a fetch method
happens in two stages. The bulk method differs from
the gather and bound methods in that it does not need
to run the inspector. Therefore, before running the
inspector phase, we need to decide if the bulk method
is the best choice. The costs of each method are
computed as follows:

N: number of indirect array accesses
T1: time spent on a single array access in the

inspector
T2: communication time for gathering N elements

from a remote array

T3: communication time for bulk reading the
bounding box

T4: communication time for bulk reading the
entire remote array

Gather method: total time = N*T1 + T2
Bound method: total time = N*T1 + T3
Bulk method: total time = T4

Before running the inspector, the exact size of the

bounding box is not known, so we approximate it by
the number of array accesses. If the bulk method is
chosen at this stage, we will skip the inspector phase
and use the bulk method, otherwise we go on to execute
the inspector.

After the inspector phase completes, we need to
make a choice between the two remaining candidates:
gather and bound. At this time, we know exactly how
big the bounding box is, so we do not need any
approximations in computing the cost. We choose the
method with the lowest cost.

5. Schedule Reuse

In some applications, the same pattern of indirect
array accesses happens over multiple iterations. One
example is an iterative solver. In this case, we would
like to store the communication schedule computed
during the inspector phase of the first iteration, and
reuse the communication schedule on other iterations.
A communication schedule may contain information
for one or more sets of indirect array accesses to
remote arrays. For each set of array accesses, the
computed array addresses and the choice of fetch
method are stored in the schedule. Schedule reuse has
been used in prior work, but our schedules contain
additional information about the fetch method to be
employed.

Schedule reuse enables several optimizations. It
amortizes the cost of the inspector over multiple
iterations. It also allows the performance model to be
more accurate. Since the cost of the inspector is
amortized, we always run the inspector during the first
iteration, so we no longer need to use an approximation
to the size of the bounding box. In fact, we have
reduced the two-stage decision process into a single
stage process. Because the communication cost of the
bound method is always less or equal to the
communication cost of the bulk method. Local buffers
used for storing the retrieved data can also be reused.

More importantly, schedule reuse gives us
opportunities to overlap communication with other
communication or with computation. For example, an

application may have repeated patterns of indirect array
accesses to an array distributed over multiple
processors. In that case, we can overlap the
communication for fetching elements from different
processors. We can also overlap the computation that
only involves local elements or computation with
elements that have been fetched with data
communication. We have found that limiting the
number of outstanding fetch calls helps performance,
which makes the choice of communication schedule
more difficult.

6. Experimental Results

6.1. Experimental Setup

Experiments were performed on three
supercomputers: Alvarez, Seaborg, and Lemieux.
Table 1 contains a summary of the three machines, and
some of their key attributes.

Name System Network CPU
Alvarez IBM Netfinity

cluster
Myrinet
2000

866 MHz
Pentium III

Seaborg IBM RS/6000
SP

SP Switch
2

375 MHz
Power 3+

Lemieux Compaq
Alphaserver
ES45

Quadrics
Elan3

1 GHz
Alpha

� � � ����	�� � � � �� ��
�� � � �� ��

6.2. Performance Results

We developed the following simple benchmark to
test our performance model. A is the remote array, and
B is the indirection array.

 foreach (p in B.domain()){
 sum += A[B[p]];
 }
 �������� 	�
�� �
���� � ���� ��
�� �� �� � � � � �� �

We varied three parameters during the experiment:

size of the array A, minimum and maximum index
needed from array A that defines the span, and the
number of array accesses. For each problem size, the
experiment ran all three methods separately and
recorded the timing for each method. We ran this
experiment on two nodes with one processor on each
node for the three machines. There are a total of 5120
problem sizes in the experiment. Below is the chart
that shows the number of times each fetch method is

the best choice for the three different machines
according to the measured data.

 Alvarez Seaborg Lemieux
Gather 438

(9%)
249
(5%)

0
(0%)

Bound 2415
(47%)

3174
(62%)

3414
(67%)

Bulk 2267
(44%)

1697
(33%)

1706
(33%)

� � � ���� 	��� ��� �� � ���� ����� �
��� � � �� ��� �� �� ��
���� � � �
���� � �� ��� � � ��
��� ��� �
��� � � �� ���� ��� ���� �� �� �� �
�� �
�� � �

� � � �� � � �� �� � ���� ��� � � �

�
!�

�
This data shows that there is no best method for the

general case. The data also shows an average of 150%
slowdown when the worst method is chosen instead of
the best method. This suggests that the choice of fetch
method is important.

To explain the different behavior across machines,
we examine the network hardware in detail. Bulk read
operations on Lemieux are implemented using RDMA
(Remote Direct Memory Access) gets, which are
supported natively in the network hardware on the
Quadrics network. During the bulk get operation, the
remote processor is not involved, as the network
hardware entirely handles servicing the memory
request at the remote end. In contrast, there is currently
no hardware support for the gather operation on
Quadrics. The software implementation of the gather
operation includes a network roundtrip and packing
done by the remote processor. This explains the data
obtained on Lemieux, which does not have the gather
method as the best method for any of the test cases. At
the time of the experiment, there was no hardware
support for bulk get on Myrinet, but hardware support
has been added since then. There is no hardware
support for bulk get on the SP.

6.3. Using the Performance Model

Next, we use our performance model to see how

well it can select the fetch method. For the data
collected on Alvarez, the performance model would
have chosen the best method 82% of time, the second
best method 17% of the time, and the worst method
less than 1% of the time. When it chooses the second
best method, it pays a performance penalty of 13%
slowdown on average. When it chooses the worst
method, it pays a performance penalty of 6% slowdown
on average. The fact that the penalty for choosing the
worst method is smaller than the penalty for choosing
the second best method may seem counterintuitive.

Upon closer examination of the data, all three methods
have very close numbers in cases where the
performance model chooses the worst method.

6.4. Sparse Matrix Vector Multiply

In this section, we present data from a sparse matrix
vector multiply benchmark in Titanium. We use the
compiler to apply the transformations that we have
talked about in this paper automatically to this code.
The Titanium code uses the GASNet [2] gm backend
for communication. As a point of comparison, we also
have a C program that does sparse matrix vector
multiply by calling a routine in Aztec. Aztec is a
library that provides algorithms for the solution of large
sparse linear systems. It is written in C. It uses MPI to
perform data communication. In terms of the source
code size, the C program using Aztec is 55% more than
the Titanium code. Both the Titanium and Aztec
algorithm partition the matrix by row. Figure 3
illustrates the layout of the matrix in the case with eight
processors. Communication is only required for the
source vector. A processor needs to fetch a source
element for every nonzero outside of its diagonal
block.
 We run our experiment on Alvarez with various
processor configurations. Each run consists of 10000
iterations of sparse matrix vector multiply to offset the
granularity of the timer. We present the descriptions of
the matrices and the graphs comparing the performance
of the two algorithms in the next two sections.

6.4.1. Matrices

We obtained the bcsstk16 matrix from Matrix

Market [10]. It is a 4884x4884 matrix with 147631
nonzeros. The nonzeros are concentrated on the
diagonal. Due to the location of the nonzeros, each
processor has to do data communication with at most
two of its neighbors.

The garon2 matrix is taken from the UF Sparse
Matrix Collection [17]. It is a 2D finite element
method matrix. The size is 13535x13535. There are
390607 numbers of nonzeros. There is more data
communication for this matrix than the previous one.
Every processor needs some data from every other
processor.

The third matrix is a random matrix. The size is
4000x4000. Each row has 40 randomly distributed
nonzeros.

�������" 	�
� � � ��
�� ��� � ���� �� � � �� �� �� �
�
�

������� # 	� �� �� � �� ������� �� � �

�� �$ � �
�� � � �� ��
��� � � � � � �� ��
� �� ������� ���� �� � � ��
�� � ��� ������ �!�

�������% 	�� ���� �� � � � ����� � � ��� ��� �

�� �$ �

�������$ 	�� ���� �� � � � ����� � � ��� ���� �� � � �

�����

�������& 	�� ���� �� � � � ����� � � ��� ���� � � � � �� � ���� �

6.4.2. Performance Analysis

 Figure 5, 6, and 7 display the performance graphs
comparing Titanium and Aztec on different processor
configurations for all three matrices. The performance
of Titanium is 15% to 20% slower than Aztec in the
single processor case, but the gap shrinks as the
number of processors increases. Titanium’s serial
performance is slightly worst than Aztec, but its
communication performance allows it to catch up to
Aztec in larger processor configurations. In some large
processor configurations, Titanium’s performance
actually beats Aztec slightly. The reason for the
difference in serial performance is the overhead due to
the generality of Titanium arrays. Recent optimizations
have eliminated most of the overhead, but for a
problem with indirect array accesses, the slowdown
remains at 20%. There is little or no overhead for the
regular case.

7. Conclusion

In this paper, we have described the automatic
transformation of irregular array access code in
Titanium to take advantage of inspector executor style
optimizations and schedule reuse optimizations. We
introduced a new performance modeling technique to
select communication methods using a combination of
data collected at compiler install time and runtime
information about the application’s access patterns.
This allows application programmers to write Titanium
code in a straightforward way, and get performance
comparable to a popular hand-tuned library. In
particular, for a sparse matrix vector multiply
benchmark, we showed that the optimized Titanium
code has comparable performance to C code with MPI
using the Aztec library. This serves as a first step
toward providing support for irregular applications in
Titanium.

10. Acknowledgements

bcss

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

number of processors

ru
nn

in
g

tim
e

(s
ec

on
ds

)

Aztec Titanium

garon2

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

number of processors

ru
nn

in
g

tim
e

(s
ec

on
ds

)

Aztec Titanium

This work was supported in part by the Department
of Energy under DE-FC03-01ER25509, by the
National Science Foundation under ACI-9619020 and
ACI-0090127, and an NDSEG fellowship.

We wish to thank the Pittsburgh Supercomputing
Center for the use of their Alpha-based Quadrics
system (Lemieux), and the National Energy Research
Scientific Computing Center (NERSC) for the use of
their IBM SP (Seaborg) and Myrinet 2000 cluster
(Alvarez). Thanks also go to the members of the
Titanium research group, who provided valuable
suggestions and feedbacks on this work. We would
like to thank the four anonymous reviewers for their
helpful comments on the original submission.

9. References

[1] H. Berryman, and J. Saltz, “A manual for PARTI runtime
primitives”, 1990.

[2] D. Bonachea, “GASNet specifications”, 2003.

[3] S. Chakrabarti, J. Demmel, and K. Yelick, “Modeling the
benefits of mixed data and task parallelism”, Symposium on
Parallel Algorithms and Architectures, 1995.

[4] R. Das, J. Saltz, and R. v. Hanxleden, “Slicing analysis
and indirect accesses to distributed arrays”, Workshop on
Languages and Compilers for Parallel Computing, 1993.

[5] R. Das, M. Uysal, J. Saltz, and Y. Hwang,
“Communication optimizations for irregular scientific
computations on distributed memory architectures”, Journal
of Parallel and Distributed Computing, 1993.

[6] J. Gosling, B. Joy, and G. Steele, “The Java language
specification”, 2000.

[7] R. v. Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J.
Saltz, “Compiler Analysis for Irregular Problems in Fortran
D”, Workshop on Languages and Compilers for Parallel
Computing, 1992.

[8] P. Hilfinger et al, “Titanium language reference manual”,
2001.

[9] C. Koelbel, P. Mehrotra, and J. Van Rosendale,
“Supporting shared data structures on distributed memory
machines”, Symposium on Principles and Practice of
Parallel Programming, 1990.

[10] Matrix Market, http://math.nist.gov/MatrixMarket.

[11] G. Pike, and P. Hilfinger, “Reordering and Storage
Optimizations for Scientific Programs”, Supercomputing,
2002.

[12] S. Sharma, R. Ponnusamy, B. Moon, Y. Hwang, R. Das,
and J. Saltz, “Run-time and compile-time support for
adaptive irregular problems”, Supercomputing, 1994.

[13] M. Strout, L. Carter, and J. Ferrante, “Compile-time
composition of run-time data and iteration reorderings”,
Programming Language Design and Implementation, 2003.

[14] R. Tuminaro, M. Heroux, S. Hutchinson, and J. Shadid,
“Official Aztec user's guide: version 2.1”, 1999.

[15] S. Vadhiyar, G. Fagg, and J. Dongarra, “Performance
Modeling for Self Adapting Collective Communications for
MPI”, LACSI Symposium, 2001.

[16] J. Wu, J. Saltz, H. Berryman, and S. Hiranandani,
“Distributed memory compiler design for sparse problems”,
1991.

[17] UF Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices.

[18] D. Walker, “The Implementation of a Three-
Dimensional PIC Code on a Hypercube Concurrent
Processor”, Conference on Hypercubes, Concurrent
Computers, and Application, 1989.

[19] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B.
Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P.
Colella, and A. Aiken, “Titanium: A high-performance Java
dialect”, Workshop on Java for High-Performance Network
Computing, 1998.

