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Abstract 

 
Compiling irregular applications, such as sparse 

matrix vector multiply and particle/mesh methods in a 
SPMD parallel language is a challenging problem.  
These applications contain irregular array accesses, 
for which the array access pattern is not known until 
runtime.  Numerous research projects have 
approached this problem under the inspector executor 
paradigm in the last 15 years.  The value added by the 
work described in this paper is in using performance 
modeling to choose the best data communication 
method in the inspector executor model.  We explore 
our ideas in a compiler for Titanium, a dialect of Java 
designed for high performance computing.  For a 
sparse matrix vector multiply benchmark, experimental 
results show that the optimized Titanium code has 
comparable performance to C code with MPI using the 
Aztec library.  
 
 
1. Introduction 
  
     Irregular array accesses arise in many scientific 
applications such as sparse matrix vector multiply and 
particle/mesh methods.  Figure 1 illustrates a simple 
example.  A is the data array, and B is the indirection 
array.  The array access pattern to A is not known until 
runtime.  When this code is run on a distributed 
memory machine, array A can be remote, in which case 
reading the elements of A would require 
communication.  Walker proposed and implemented 
the idea of using a precomputed communication 
schedule for indirect array accesses to distributed 
arrays in a PIC application [18].  His targeted 
architecture was a hypercube in a crystalline 
environment, where data need to be forwarded by 
intermediate processors in order to be transmitted from 
the source to destination processor.  The idea was 
further developed by Berryman and Saltz [5] in a 
technique called inspector executor.  During program 

execution, the inspector examines the data references 
made by a processor, and calculates which off-
processor data needs to be fetched and where this data 
will be stored once it is received.  The executor loop 
then uses the gathered data to perform the actual 
computation. 
 

for i = 1 to n do 
   sum += A[B[i]] 
end do 
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After the inspector phase, the access pattern is 

known.  In some applications, the communication 
pattern is reused multiple times, so the runtime may 
spend some time determining an efficient way to 
perform the communication.  Our experiments show 
that the best method for doing this communication is 
both application and machine specific.  For some 
problem sizes, it may even be better to skip the 
inspector phase entirely, and simply retrieve the entire 
data array. 

We explore our ideas in a compiler for Titanium 
[19].  Titanium is a dialect of Java designed for high-
performance parallel computing using a SPMD 
execution model.  It has extensions for scientific 
computing, including a multidimensional array 
construct that we use in this paper.  Our compiler can 
automatically apply the inspector executor optimization 
to indirect array access code.  The generated code is 
able to accurately choose the best fetch method during 
runtime to perform the data communication using 
performance modeling.  When the access pattern is 
repeated over multiple iterations, further optimizations 
such as schedule reuse, buffer reuse, overlap 
communication with communication, and overlap 
communication with computation are applied to the 
code.   

To demonstrate the effectiveness of the 
optimizations, we develop a sparse matrix vector 
multiply benchmark in Titanium, and compare the 
performance of the optimized Titanium code to C code 



with MPI using the Aztec library [14].  Titanium code 
is written at a higher level of abstraction and is more 
concise, yet their performance is comparable. 
  
2. Related Work 
 

The inspector executor technique was developed by 
Berryman and Saltz.  The PARTI runtime library [1] 
and its successor CHAOS [12] provided primitives for 
application programmers to apply the inspector 
executor optimization on the source level.  The same 
research group provided the dataflow framework to 
determine where communication schedule can be 
generated, where communication operations are placed, 
and when schedules can be combined [7].  As an 
experimental result, they carried out the optimizations 
that would have been suggested by the dataflow 
framework manually.  The ARF [16] and KALI [9] 
compilers were able to automatically generate inspector 
executor pairs for simply nested loops.  Slicing analysis 
was developed to extend the inspector executor 
paradigm to multiple level of indirection [4].  More 
recently, the inspector executor technique was used to 
develop runtime reordering of data and computation 
that enhance memory locality in applications with 
sparse data structures [13].   

There have been numerous research works in the 
area of communication scheduling.  Chakrabarti et al. 
[3] implemented an algorithm for optimizing 
communication schedules across loops in a global 
manner in the HPF compiler.  Dongarra et al. [15] gave 
techniques for performance modeling collective 
communications. 

The work presented in this paper extends the 
inspector executor line of research by looking at the 
problem of selecting the best communication method.  
Our work is done in the context of a high level 
language without explicit communication.  The choice 
is both application and machine specific.  Our compiler 
is able to automatically generate code that can 
accurately choose the best communication method 
during runtime based on performance modeling. 

 
3. Titanium 
 
     Titanium is a dialect of Java, but does not use the 
Java virtual machine model.  Instead, the end target is 
assembly code.  During compilation, Titanium code is 
translated into C code, and then the C compiler 
compiles the generated C code.  C is used as an 
intermediate step for portability.  Titanium runs on a 
wide range of platforms, including uniprocessors, 
shared memory multiprocessors, distributed-memory 

clusters of uniprocessors or SMPs (CLUMPS), and a 
number of specific supercomputer architectures (Cray 
T3E, IBM SP, Origin 2000). 
 
3.1. Memory Consistency Model 
 
     Titanium inherits many features of Java, one of 
which is the Java memory consistency model [6].  
Titanium’s interpretation of the Java memory 
consistency model is defined in the language 
specification [8].  Here are some informal properties of 
the Titanium model. 
• Locally sequentially consistent: For a single 

processor, all reads and writes to a given memory 
location must appear to occur in exactly the order 
specified. 

• Globally consistent at synchronization events: At a 
global synchronization event, such as a barrier, all 
processors must agree on the values of all the 
variables.  At a non-global synchronization event, 
such as entry into a critical section, the processor 
must see all previous updates made using that 
synchronization event. 

    The first property implies that a processor must be 
able to read its own writes.  If a processor writes to 
array elements that have been prefetched, subsequent 
reads by that processor on those array elements must 
return the new value.  The second property makes data 
prefetched prior to a synchronization point unusable 
after that synchronization point.  The prefetched array 
elements may have changed, and reads after the 
synchronization point must reflect those changes. 
 
3.2. Foreach Loop 
 
    Our transformation targets the built-in foreach loops 
in Titanium.  A foreach loop has the form of  
foreach (p in D) S, where the iteration space D is a 
rectangular set of positive integers, and S any sequence 
of statements.  The loop’s semantics specifies that the 
body, S, be executed |D| times with p bound to each 
element of D in each iteration, but no particular 
execution order is required.  The foreach loop is a local 
loop.  Titanium compiler does extensive analysis and 
optimizations for foreach loops [11].  The relevant 
analysis for our purposes is dominator analysis for 
foreach loops.  The classical dominator analysis is used 
to determine the following: 
• Whether a foreach loop is a full domain loop or a 

partial domain loop.  A full domain loop executes 
on every iteration and cannot be cut short except 
by a fatal error. 



• Which array accesses appear on every iteration of 
the loop.   

 
4. Inspector Executor in Titanium 
 
4.1. Compile Time Transformations 
 

The first step is to identify prefetch candidates for 
indirect array accesses A[B[i]].  Below is the list of the 
conditions that the compiler checks for:  
• The array access appears in full domain foreach 

loops. 
• The array access appears on every iteration of the 

loop. 
• B and B[i] do not change inside of the loop. 
• A does not change inside of the loop.  The reason 

that A[i] can change is that the conflicts can be 
resolved by merging against the prefetched data in 
runtime when A[i] is written to. 

• There are no synchronization points inside of the 
foreach loop, since the memory model requires 
memory to be globally consistent at a 
synchronization point. 

 After identifying the prefetch candidates, the 
compiler performs the inspector executor 
transformation.  In the inspector phase, the array 
address for each A[B[i]] is computed.  The computed 
values are stored in an index array.  After the inspector 
phase, a fetch method is chosen to retrieve the remote 
data into a local buffer.  More details on the choice of 
the fetch method are presented in the next section.  In 
the executor loop, values for each A[B[i]] are read out 
of the local buffer. 
 
4.2. Runtime Selection of Fetch Methods 
 

With a set of indirect array accesses to a remote 
array, there are several options for performing the data 
communication.  The options are listed below: 
• Gather method: use a gather operation to retrieve 

all the needed elements.  The gather operation is a 
one-sided operation that copies selected elements 
from a remote array into a local buffer. 

• Bound method: use a bulk read operation to 
retrieve a bounding box that contains the needed 
elements. 

• Bulk method: use a bulk read operation to retrieve 
the entire remote array. 

The three methods require different amount of set 
up work: 

• The gather method needs to run the inspector 
phase to translate all the indirect array accesses 
into remote addresses. 

• The bound method needs to run the inspector 
phase to compute the bounding box that contains 
all the needed elements. 

• The bulk method does not need to run the 
inspector phase. 

We define the best fetch method as the method that 
takes the least amount of time to complete.  Our 
experiment shows that there is no best method for the 
general case.  The choice is both application and 
machine specific.  The application determines the size 
of the array, number of accesses to that array, and the 
size of the bounding box.  The machine gives different 
latencies for completing a bulk read operation and a 
gather operation.  Without help from the compiler, the 
application programmer would need to make this 
decision at the application level, and have three 
different branches that handle the three fetch methods.  
This makes the application code much less readable 
and non-portable.  We would like to have the compiler 
generate code that can choose the best fetch method at 
runtime based on performance modeling numbers 
collected on the particular machine. 

The total time of a fetch method consists of two 
parts: the local computation that runs the inspector 
phase and the communication that actually retrieves the 
elements from the remote processor.  We develop a 
performance model to account for these two costs.  For 
modeling the local computation, we empirically 
measure the cost for computing for a single array 
access in the inspector phase.  For modeling 
communication, we measure the latencies of the gather 
and bulk read operation with different processor 
configurations.  These empirical measurements only 
need to be done once when the compiler is built on a 
particular machine.  When an application runs, it 
simply looks in a table containing this data to make a 
decision on which fetch method to use. 

The decision process for choosing a fetch method 
happens in two stages.  The bulk method differs from 
the gather and bound methods in that it does not need 
to run the inspector.  Therefore, before running the 
inspector phase, we need to decide if the bulk method 
is the best choice.  The costs of each method are 
computed as follows: 

N: number of indirect array accesses 
T1: time spent on a single array access in the      

inspector 
T2:   communication time for gathering N elements 

from a remote array 



T3: communication time for bulk reading the 
bounding box 

T4: communication time for bulk reading the 
entire remote array 

 
Gather method:    total time = N*T1 + T2 
Bound method:    total time = N*T1 + T3 
Bulk method:       total time = T4 
 
Before running the inspector, the exact size of the 

bounding box is not known, so we approximate it by 
the number of array accesses.  If the bulk method is 
chosen at this stage, we will skip the inspector phase 
and use the bulk method, otherwise we go on to execute 
the inspector. 

After the inspector phase completes, we need to 
make a choice between the two remaining candidates: 
gather and bound.  At this time, we know exactly how 
big the bounding box is, so we do not need any 
approximations in computing the cost.  We choose the 
method with the lowest cost. 
 
5. Schedule Reuse 
 

In some applications, the same pattern of indirect 
array accesses happens over multiple iterations.  One 
example is an iterative solver.  In this case, we would 
like to store the communication schedule computed 
during the inspector phase of the first iteration, and 
reuse the communication schedule on other iterations.  
A communication schedule may contain information 
for one or more sets of indirect array accesses to 
remote arrays.  For each set of array accesses, the 
computed array addresses and the choice of fetch 
method are stored in the schedule.  Schedule reuse has 
been used in prior work, but our schedules contain 
additional information about the fetch method to be 
employed. 

Schedule reuse enables several optimizations.  It 
amortizes the cost of the inspector over multiple 
iterations.  It also allows the performance model to be 
more accurate.  Since the cost of the inspector is 
amortized, we always run the inspector during the first 
iteration, so we no longer need to use an approximation 
to the size of the bounding box.  In fact, we have 
reduced the two-stage decision process into a single 
stage process.  Because the communication cost of the 
bound method is always less or equal to the 
communication cost of the bulk method.  Local buffers 
used for storing the retrieved data can also be reused. 

More importantly, schedule reuse gives us 
opportunities to overlap communication with other 
communication or with computation.  For example, an 

application may have repeated patterns of indirect array 
accesses to an array distributed over multiple 
processors.  In that case, we can overlap the 
communication for fetching elements from different 
processors.  We can also overlap the computation that 
only involves local elements or computation with 
elements that have been fetched with data 
communication.  We have found that limiting the 
number of outstanding fetch calls helps performance, 
which makes the choice of communication schedule 
more difficult.   

 
6. Experimental Results 
 
6.1. Experimental Setup 
 

Experiments were performed on three 
supercomputers: Alvarez, Seaborg, and Lemieux.  
Table 1 contains a summary of the three machines, and 
some of their key attributes.   

 
Name System Network CPU 
Alvarez IBM Netfinity 

cluster 
Myrinet 
2000 

866 MHz 
Pentium III 

Seaborg IBM RS/6000 
SP 

SP Switch 
2 

375 MHz 
Power 3+ 

Lemieux Compaq 
Alphaserver 
ES45 

Quadrics 
Elan3 

1 GHz 
Alpha 
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6.2. Performance Results 
 

We developed the following simple benchmark to 
test our performance model.  A is the remote array, and 
B is the indirection array. 

 
    foreach (p in B.domain()){ 
        sum += A[B[p]]; 
    } 
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We varied three parameters during the experiment: 

size of the array A, minimum and maximum index 
needed from array A that defines the span, and the 
number of array accesses.  For each problem size, the 
experiment ran all three methods separately and 
recorded the timing for each method.  We ran this 
experiment on two nodes with one processor on each 
node for the three machines.  There are a total of 5120 
problem sizes in the experiment.  Below is the chart 
that shows the number of times each fetch method is 



the best choice for the three different machines 
according to the measured data. 
 
 Alvarez Seaborg Lemieux 
Gather 438  

(9%) 
249  
(5%) 

0  
(0%) 

Bound 2415 
(47%) 

3174 
(62%) 

3414 
(67%) 

Bulk 2267 
(44%) 

1697 
(33%) 

1706 
(33%) 
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This data shows that there is no best method for the 

general case.  The data also shows an average of 150% 
slowdown when the worst method is chosen instead of 
the best method.  This suggests that the choice of fetch 
method is important.   

To explain the different behavior across machines, 
we examine the network hardware in detail.  Bulk read 
operations on Lemieux are implemented using RDMA 
(Remote Direct Memory Access) gets, which are 
supported natively in the network hardware on the 
Quadrics network.  During the bulk get operation, the 
remote processor is not involved, as the network 
hardware entirely handles servicing the memory 
request at the remote end.  In contrast, there is currently 
no hardware support for the gather operation on 
Quadrics.  The software implementation of the gather 
operation includes a network roundtrip and packing 
done by the remote processor.  This explains the data 
obtained on Lemieux, which does not have  the gather 
method as the best method for any of the test cases.  At 
the time of the experiment, there was no hardware 
support for bulk get on Myrinet, but hardware support 
has been added since then.  There is no hardware 
support for bulk get on the SP. 

 
6.3. Using the Performance Model 

 
Next, we use our performance model to see how 

well it can select the fetch method.  For the data 
collected on Alvarez, the performance model would 
have chosen the best method 82% of time, the second 
best method 17% of the time, and the worst method 
less than 1% of the time.  When it chooses the second 
best method, it pays a performance penalty of 13% 
slowdown on average.  When it chooses the worst 
method, it pays a performance penalty of 6% slowdown 
on average.  The fact that the penalty for choosing the 
worst method is smaller than the penalty for choosing 
the second best method may seem counterintuitive.  

Upon closer examination of the data, all three methods 
have very close numbers in cases where the 
performance model chooses the worst method. 

 
6.4. Sparse Matrix Vector Multiply 
 

In this section, we present data from a sparse matrix 
vector multiply benchmark in Titanium.  We use the 
compiler to apply the transformations that we have 
talked about in this paper automatically to this code.  
The Titanium code uses the GASNet [2] gm backend 
for communication.  As a point of comparison, we also 
have a C program that does sparse matrix vector 
multiply by calling a routine in Aztec.  Aztec is a 
library that provides algorithms for the solution of large 
sparse linear systems.  It is written in C.  It uses MPI to 
perform data communication.  In terms of the source 
code size, the C program using Aztec is 55% more than 
the Titanium code.  Both the Titanium and Aztec 
algorithm partition the matrix by row.  Figure 3 
illustrates the layout of the matrix in the case with eight 
processors.  Communication is only required for the 
source vector.  A processor needs to fetch a source 
element for every nonzero outside of its diagonal 
block. 
    We run our experiment on Alvarez with various 
processor configurations.  Each run consists of 10000 
iterations of sparse matrix vector multiply to offset the 
granularity of the timer.  We present the descriptions of 
the matrices and the graphs comparing the performance 
of the two algorithms in the next two sections. 

 
6.4.1. Matrices 

 
We obtained the bcsstk16 matrix from Matrix 

Market [10].  It is a 4884x4884 matrix with 147631 
nonzeros.  The nonzeros are concentrated on the 
diagonal.  Due to the location of the nonzeros, each 
processor has to do data communication with at most 
two of its neighbors.  

The garon2 matrix is taken from the UF Sparse 
Matrix Collection [17].  It is a 2D finite element 
method matrix.  The size is 13535x13535.  There are 
390607 numbers of nonzeros.  There is more data 
communication for this matrix than the previous one.  
Every processor needs some data from every other 
processor.   

The third matrix is a random matrix.  The size is 
4000x4000.  Each row has 40 randomly distributed 
nonzeros.   
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6.4.2. Performance Analysis 
 
    Figure 5, 6, and 7 display the performance graphs 
comparing Titanium and Aztec on different processor 
configurations for all three matrices.  The performance 
of Titanium is 15% to 20% slower than Aztec in the 
single processor case, but the gap shrinks as the 
number of processors increases.  Titanium’s serial 
performance is slightly worst than Aztec, but its 
communication performance allows it to catch up to 
Aztec in larger processor configurations.  In some large 
processor configurations, Titanium’s performance 
actually beats Aztec slightly.  The reason for the 
difference in serial performance is the overhead due to 
the generality of Titanium arrays.  Recent optimizations 
have eliminated most of the overhead, but for a 
problem with indirect array accesses, the slowdown 
remains at 20%.  There is little or no overhead for the 
regular case. 
 
7. Conclusion 
 

In this paper, we have described the automatic 
transformation of irregular array access code in 
Titanium to take advantage of inspector executor style 
optimizations and schedule reuse optimizations.  We 
introduced a new performance modeling technique to 
select communication methods using a combination of 
data collected at compiler install time and runtime 
information about the application’s access patterns.  
This allows application programmers to write Titanium 
code in a straightforward way, and get performance 
comparable to a popular hand-tuned library.  In 
particular, for a sparse matrix vector multiply 
benchmark, we showed that the optimized Titanium 
code has comparable performance to C code with MPI 
using the Aztec library.  This serves as a first step 
toward providing support for irregular applications in 
Titanium. 
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