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Abstract

The problem of writing high performance parallel
applications  becomes  even  more  challenging  when
irregular,  sparse or adaptive  methods are employed.
In  this  paper  we  introduce  compiler  and  runtime
support for programs with indirect array accesses into
Titanium,  a  high-level  language  that  combines  an
explicit  SPMD  parallelism  model  with  implicit
communication  through  a  global  shared  address
space.    By  combining  the  well-known  inspector-
executor technique with high level multi-dimensional
array constructs,  compiler analysis and performance
modeling,  we  demonstrate  optimizations  that  are
entirely  hidden  from  the  programmer.   The  global
address space makes the programs easier to write than
in message passing, with remote array accesses used
in place of  explicit  messages with data  packing and
unpacking.   The  programs  are  also  faster  than
message  passing  programs:  Using  sparse  matrix-
vector  multiplication  programs,  we  show  that  the
Titanium  code  is  an  average  of  21%  faster  across
several  matrices  and  machines,  with  the  best  case
speedup more than a factor of 2x.  The performance
advantages  are  due  to  both  the  lightweight  RDMA
(Remote Direct Memory Access) communication model
that  underlies  the  Titanium  implementation  and
automatic  optimization  selection  that  adapts  the
communication to the machine and workload, in some
cases  using  different  communication  models  for
different processors within a single computation.

1. Introduction

Application  scientists  increasingly  employ
irregular  data  structures  such  as  unstructured  grids,
particle-mesh  structures,  adaptive  meshes  and  sparse
matrices  in an effort  to  obtain  more  computationally
efficient  methods.  These  methods  are  not  well
supported by popular high performance programming
models,  because they lead to  indirect  array accesses,
pointer-based data structures, and communication that

is unpredictable in both timing and volume.  Titanium
[23]  is  a  JavaTM-based  language  designed  for  high
performance computing, with a shared address space to
ease programming of pointer-based data structures and
a powerful multidimensional array abstraction that has
proven useful in both adaptive and non-adaptive block-
structured algorithms.  

In  this  paper  we propose  new compiler and
runtime extensions for the Titanium implementation to
support programs with indirect array accesses, such as
A[B[i]],  where  the  A  array  may  live  in  a  remote
processor’s  memory.   These  computations  arise  in
sparse  iterative  solvers,  particle-mesh  methods,  and
elsewhere.  We add compiler support for an inspector-
executor  execution  model,  which  optimizes
communication performing runtime optimization based
on the  dynamic  pattern  of  indices  in  the  indirection
array, which is B in the previous example.  There are
several  possible  transformations that  can be  done on
the  communication,  and  we  consider  three  in  this
paper: sending the entire remote array, sending exactly
those elements that are needed, and sending a bounding
box  of  the  required  values.   While  packing  is
guaranteed  to  send  the  minimal  number  of  actual
values,  it  has  a  higher  metadata  overhead  and  is
therefore  not  necessarily  optimal.   One  of  the
challenges  is  to  select  the  best  communication
transformation, because it depends on properties of the
application and the machine.  We introduce a simple
analytical performance model into the compiler, which
selects optimizations automatically.

We  analyze  the  benefits  of  the  automated
inspector-executor transformation using sparse matrix-
vector  multiplication  on  a  set  of  matrices  from real
applications.   Our  results  show  that  although  the
program  is  significantly  simpler  when  written  in
Titanium, because it avoids the explicit communication
code and the pack and unpack code, the performance is
almost  always  superior  to  a  popular  MPI  message
passing code.   The speedup relative to MPI on a suite
of over  20 matrices  averages  21% on three  different
machines, with the maximum speedup of more than 2x.
The model-based  optimization selection is  critical  to
both programmability and performance.  Not only does



the model select optimizations that differ by matrix and
machine,  but also differ  between processors within a
single  matrix-vector  multiplication.   This  runtime
complexity  is  entirely  hidden  from the  programmer,
making the application both cleaner and faster.

2. Related Work

The idea of inspector  executor optimizations
for scientific codes is not new.  Walker proposed and
implemented  the  idea  of  using  a  pre-computed
communication schedule for indirect array accesses to
distributed arrays in a Particle-In-Cell application [20].
The  idea  is  widely used  in  application  codes  today,
where it is programmed manually. Use of the technique
with compiler and library support  was  developed  by
Berryman and Saltz.  The PARTI runtime library [2]
and its successor CHAOS [14] provided primitives for
application  programmers  to  apply  the  inspector
executor optimization on the source level.  The same
research  group  provided  the  dataflow  framework  to
determine  where  a  communication  schedule  can  be
generated, where communication operations are placed,
and  when  schedules  can  be  combined  [9].   As  an
experimental  result,  they  manually  carried  out  the
optimizations that  would have been suggested by the
dataflow framework.  The  ARF [18] and KALI [11]
compilers were able to automatically generate inspector
executor pairs for simply nested loops.  Slicing analysis
was  developed  to  extend  the  inspector  executor
paradigm to  multiple  level  of  indirection [6].   More
recently, the inspector executor technique was used to
develop  runtime reordering  of  data  and  computation
that  enhance  memory  locality  in  applications  with
sparse data structures [15].  

Benkner [3] introduces the concept of  halos
in HPF for the programmers to specify non-local access
patterns  to  distributed  arrays,  and  control  the
communication  associated  with  these  array  accesses.
Kelp  [1]  allows  the  programmers  to  use  the
MotionPlan  object  to  do  inspector  executor
communication.   Unlike  those  two  approaches,  the
optimizations we will describe in this paper are entirely
hidden from the programmer. 

There have been numerous research works in
the area of communication scheduling.  Chakrabarti  et
al.  [5]  implemented  an  algorithm  for  optimizing
communication  schedules  across  loops  in  a  global
manner in the HPF compiler.  Dongarra et al. [17] gave
techniques  for  performance  modeling  collective
communications.

The work presented in this paper extends the
inspector  executor  line of  research by looking at  the
problem of selecting the best communication method.
Our  work  is  done  in  the  context  of  a  high  level

language with a global address space.  Our compiler is
able to automatically generate code that can accurately
choose the best communication method during runtime
based on an integrated performance model.

3. Titanium

Titanium is a dialect of Java, but does not use
the  Java  Virtual  Machine  model.   Instead,  the  end
target is assembly code.  During compilation, Titanium
code is translated into C code, and then  a C compiler
compiles  the  generated  C  code.   C  is  used  as  an
intermediate  step  for  portability.   In  addition  to
generating  C  code  to  run  on  each  processor,  the
compiler generates calls to a runtime layer based on the
GASNet  [4]  communication  layer.   GASNet  uses
lightweight  communication,  exploiting  hardware
support  for  direct  remote  reads  and  writes  when  it
exists.   Titanium runs on a wide range of platforms,
including  uniprocessors,  shared  memory  machines,
distributed-memory clusters of uniprocessors or SMPs
(CLUMPS),  and a number of specific supercomputer
architectures (Cray X1, Cray T3E, SGI Altix, IBM SP,
Origin 2000, and NEC SX6).

3.1. Memory Consistency Model

Titanium inherits  many features of Java, one
of which is  the Java memory consistency model [8].
Titanium’s  interpretation  of  the  Java  memory
consistency  model  is  defined  in  the  language
specification [10].  Here are some informal properties
of the Titanium model.
• Locally  sequentially  consistent:  All  reads  and

writes issued by a given processor must appear to
that  processor  to  occur  in  exactly  the  order
specified.  Thus, dependencies within a processor
stream must be observed.

• Globally consistent at synchronization events: At a
global synchronization event, such as a barrier, all
processors  must  agree  on  the  values  of  all  the
variables.  At a non-global synchronization event,
such as entry into a critical section, the processor
must  see  all  previous  updates  made  using  that
synchronization event.

The first property implies that a processor must be able
to read its own writes.  If a processor writes to array
elements  that  have  been  prefetched  from  a  remote
location into a local  buffer,  subsequent reads by that
processor  must  return  the  new  value.   The  second
property  makes  data  prefetched  prior  to  a
synchronization  point  unusable  after  that
synchronization point.  The prefetched data may have
been changed by other processors, and reads after the



synchronization point must reflect those changes.  This
property  prevents  code  motion  past  synchronization
points.

3.2. Foreach Loop

The SPMD model in Titanium means that an
instance  of  the  program is  run  on  some  number  of
processors, which is specified at program startup time.
Each copy of the program runs independently, without
implied global synchronization.  

Our transformation targets the built-in foreach
loops in Titanium.  A foreach loop has the form

foreach (p in D) S
where  the  iteration  space  D is  a  rectangular  set  of
Points, where a Point is a n-tuple for an n-dimensional
array.   S any  sequence  of  statements.   The  loop’s
semantics specifies that  the body,  S,  be executed  |D|
times  with  p bound  to  each  element  of  D in  each
iteration, but no particular execution order is required.
The foreach loop is a local loop executed by a single
processor, whereas the parallelism is at a higher level
through the  SPMD  model.   Titanium compiler  does
extensive analysis and optimizations for foreach loops
[13].  

4. Source Code Transformation

In  this  section,  we give  motivations  for  the
optimizations  later  in  the  paper  using  source  code
transformation  on  a  simple  example.   The  simple
example is the indirect sum benchmark in Figure 1.

The  example  illustrates  the  case  for  two processors.
But it can easily be extended for more processors.  A is
an array that resides on processor 1, and B is an index
array  owned  by  processor  0  for  accessing  array  A.
When  processor  0  reads  A[B[i]],  it  requires
communication,  because  A  resides  on  processor  1.
Analogously, C is an array on processor 0, and D is an
index array owned by processor 1 for accessing array
C. 

In  Figure  2,  we  introduce  buffers  into  the
indirect sum benchmark.  The buffers are local to each
processor.  The values of each indirect array access are

stored  in  the  buffer,  and  subsequently  used  in  the
second loop.

 
  

In Figure  1 and Figure  2, the communication
uses a pull  strategy.  Each processor  gets the data it
needs from the remote  processor  that  owns the data.
The next source code transformation in Figure 3 uses a
push strategy instead.  The code makes the assumption
that  processor  0  knows what data processor  1  needs
from itself, and the location of the buffer on processor
1 to store this data.  The same assumption applies to
processor 1.   In the push strategy, data  is  put  to the
processor that needs it.

 
Two questions  arise  from these  source  code

transformations.  The first question is when is it legal to
apply these transformations.   The  second question is
how  do  these transformations  give  us  the  desired
speedup.  These questions will be addressed later in the
paper.  

5. Compile Time Transformations

5.1. Identify Inspector Executor Candidates

The first step is to identify inspector executor
candidates for indirect array accesses A[B[i]].  Below
is the list of the conditions that the compiler checks for:
• B and B[i] do not change inside of the loop.
• A and A[i] do not change inside of the loop.
• There are no synchronization points inside of the

foreach loop, since the memory model requires
memory  to  be  globally  consistent  at  a
synchronization point.

Processor 0 Processor 1

for (i=0; i<n; i++){
   buffer1[i] = C[D[i]];
} 
for (i=0; i<n; i++){
    sum += buffer0[i];
}

Figure 3: indirect sum benchmark on two 
processors using push strategy

for (i=0; i<n; i++){
   buffer0[i] = A[B[i]];
} 
for (i=0; i<n; i++){
    sum += buffer1[i];
}

Processor 0 Processor 1

for (i=0; i<n; i++){
    buffer0[i] = A[B[i]];
} 
for (i=0; i<n; i++){
    sum += buffer0[i];
}

Figure 2: indirect sum benchmark on two 
processors with local buffers

for (i=0; i<n; i++){
    buffer1[i] = C[D[i]];
} 
for (i=0; i<n; i++){
    sum += buffer1[i];
}

Processor 0 Processor 1

for (i=0; i<n; i++){
    sum += A[B[i]];
}

Figure 1: indirect sum benchmark on two 
processors

for (i=0; i<n; i++){
    sum += C[D[i]];
}



After identifying the candidates, the compiler
performs the inspector executor transformation.  In the
inspector phase, the array address for each A[B[i]] is
computed.  The computed values are stored in an index
array.   After  the  inspector  phase,  a  communication
method  is  chosen  to  retrieve  the  remote  data  into  a
local  buffer.   More  details  on  the  choice  of  the
communication  method  are  presented  in  Section  7.
The  set  of  array  addresses  together  with  the
communication method are stored in a communication
schedule.  In the executor loop, values for each A[B[i]]
are read out of the local buffer.

In  some  applications,  the  same  pattern  of
indirect  array  accesses  happens  over  multiple
iterations.  One example is an iterative solver.  In this
case,  we  would  like  to  store  the  communication
schedule computed during the inspector  phase of the
first iteration,  and reuse the communication schedule
on other  iterations.   A communication schedule  may
contain  information  for  one  or  more  sets  of  indirect
array accesses to remote arrays.  For each set of array
accesses, the computed array addresses and the choice
of communication method are stored in the schedule.
Schedule reuse has been used in prior  work,  but our
schedules  contain  additional  information  about  the
communication method to be employed.

The three properties are sufficient for ensuring
the soundness of the inspector executor transformation.
First we show that the values read for B[i] are the same
for both versions of the program.  If B and B[i] do not
change  during  the  execution  of  the  loop,  then  the
values read for B[i] in the inspector are the same as the
ones in the original loop.  B can only change locally,
because it  is  a  pointer  on  the  local  processor.   The
changes to  B[i]  can either  come locally or  remotely.
We know that there are no local changes, because we
check that B and B[i] are loop invariant using defuse
information.   Remote  changes  to  B[i]  are  possible,
since any of the remote  processors  can be  executing
code  that  modifies  B[i]  while  the  local  processor  is
inside the loop.   If  we take  a  snap  shot of  memory
where  the  B[i]’s  reside  before  the  local  processor
enters the loop, we can use the values from the snap
shot for B[i]’s inside the loop regardless if  there are
changes to B[i] remotely.  The reason is that there is no
synchronization event inside the loop,  so any remote
changes to B[i] during the execution of the loop do not
need  to  be  reflected  under  the  Titanium  memory
consistency model.  Any writes to B[i] remotely while
the  local  processor  is  executing  this  loop  would
constitute a race condition.

Now we know the index sets for both versions
are the same.  We would like to show that the values
read from A using this index set are the same for both
versions of the program.  The argument is similar to the
previous step.  We know that there are no local changes

to A or A[i] using defuse information.  Changes to A[i]
caused  by remote  processors  during the  loop  do  not
need  to  be  reflected,  because  there  is  no
synchronization event inside the loop.

The requirement that A[i] is not modified by
the processor executing the loop can be relaxed.  The
processor executing the loop has access to the buffer
that  contains  the  prefetched  values  of  A[B[i]].   The
runtime  can  conceivably  intercept  all  writes  to  A[i]
from this processor in the loop, and reflect the changes
to the values in the buffer.  Our experiments show that
this relaxation is not worthwhile.

5.2. Pull to Push Transformation

Now we know the requirements for applying
the inspector executor transformation.  In this section,
we turn  our attention  to  the  issue  of  using the  push
strategy instead of the pull strategy for communication.
Extra coordination between processors is needed to use
the push strategy.  In the case where the schedule can
be reused, we would like to communicate the index set
and  the  choice  of  communication method during the
first iteration, and have the processor that owns the data
to  send  the  needed  data  in  the  subsequent  iterations
independently.   The  push strategy uses about half as
many messages as the pull strategy.  The pull strategy
also suffers when the remote processor is not attentive
to the network.  The communication is not entirely one-
sided,  because  remote packing  is  required,  so  if  the
remote processor  is  in a  computation intensive loop,
other processors may be delayed waiting for it.  

The  extra  coordination  means  that  the
communication  calls  need  to  be  placed  in  the  right
place  so  that  the  data  will  be  coming  when  it  is
expected.  It is the job of the compiler to find the right
place in the code to insert these communication calls,
since we are applying the optimizations automatically
without hints from the application programmer.

The communication calls need to be placed in
such a way that when a processor is about to enter the
loop that contains the inspector executor array access,
the  expected  data  is  on  its  way  from  the  remote
processor.  The processor can simply poll on a flag for
the arrival of the data.    

In Titanium, a barrier statement is executed by
all the processors at the same time for the same number
of times.  A barrier that is executed by a subset of the
processors  would  cause  deadlock.   The  Titanium
compiler  provides  a  static  analysis  called  single
analysis  that  eliminates  this  type  of  bugs.   It
conservatively rejects all programs that might run into
deadlocks due to misplaced barriers at compile time.

We use single analysis to  help us in finding
the right place to insert the communication calls.  The



property  that  we are  looking  for  is  that  whenever  a
processor  is  about  to  enter  the  loop  containing  the
inspector  executor  array  access,  the  processor  that
owns  the  needed  data  would  execute  the
communication calls to send the data over.  In the top
of the loop that contains the inspector executor array
access,  we insert  a  barrier  node  in  the  control  flow
graph.  Then we run single analysis on this modified
control flow graph.  Single analysis tells us if it is safe
to place the barrier in the top of the loop.  If it is not
safe, then it is not safe to place the communication calls
there, because the processor that needs the data and the
processor that owns the data may come to the top of the
loop at different times or for different number of times.
If single analysis tells us that it is safe to place a barrier
in  the  top  of  the  loop,  then  we  can  place  the
communication calls there, because we are certain that
all processors would come to the top of the loop around
the same time for  the same number  of  times.   After
running single  analysis,  we remove  the  barrier  node
from the control flow graph.

5.3. Overlap

Our  generated  code  utilizes  two  types  of
overlap:  communication  with  communication,  and
communication with computation.  When a processor
owns  data  that  is  needed  by  multiple  remote
processors,  non-blocking  puts  are  used  to  push  the
needed data to the remote processors.   While waiting
for  the  remote  data  to  arrive,  we  can  overlap  the
computation  that  only  involves  local  elements  or
computation with elements that have already arrived.

6. Experimental Platforms

We performed experiments on three parallel
machines and developed a performance model for the
communication on each of them. The first, RTC, is a
cluster of Itanium processors connected by a Myrinet
network  at  Rice  University.   The  second is  an IBM
Power3 system, Seaborg, which is at NERSC, and the
last,  Lemiuex,  is  an  HP  system  at  PSC.   Table  1
contains a summary of their key features. 

Name System Network CPU
RTC Linux cluster Myrinet

2000
900 MHz
Itanium 2 

Seaborg IBM RS/6000 SP SP Colony
Switch 2

375 MHz
Power 3+

Lemieux Compaq
Alphaserver ES45

Quadrics
Elan3

1 GHz
Alpha

Table 1: machine summary 

7. Runtime Selection of Communication 

With  a  set  of  indirect  array  accesses  to  a
remote array, there are several options for performing
the data communication.  The options are listed below:

• Pack method:  only  communicates  the  needed
elements  without  duplicates.   The  needed
elements are packed into a buffer before sending
them to the processor that needs the data.

• Bound method: use a bulk put operation to send
a  bounding  box  that  contains  the  needed
elements.

• Bulk method: use a bulk put operation to send
the entire array.

The three methods require different amount of
set  up  work.  The  pack  method needs  to  run  the
inspector  phase  to  translate  all  the  indirect  array
accesses into remote addresses and the  bound method
needs  to  run  the  inspector  phase  to  compute  the
bounding  box  that  contains  all  the  needed  elements.
The bulk method does not require an inspector phase.

In this paper, we focus on the case where the
communication  pattern  is  repeated  several  times,  in
which case the cost of the inspector is amortized, so we
always run the inspector in the first iteration.  In this
scenario the bulk method becomes a special case of the
bounding box method, so we only discuss the pack and
bound methods in the remainder of this paper.  

Our  experiments  show  that  the  choice  of
communication  is  both  application  and  machine
specific.   The  application  determines  the  size  of  the
array, number of accesses to that array, and the size of
the  bounding  box.   The  machine  gives  different
memory  and  communication  costs.   Our  compiler
generates code that can choose the best communication
method at runtime based on a performance model.

The  total  time  of  a  communication  method
consists of three parts: 
1. the  time  spent  on  getting  the  data  ready  for

communication in the remote processor
2. the communication time for sending the data 
3. the time for reading the data out of local buffer in

the executor loop  
Both 1 and 3 are local processor costs, which

are dominated by memory access times.  We use cache
and memory latency numbers provided by the vendor
in  a performance  model.   In  the  pack  method,  the
needed  elements  are  gathered  into  a  buffer  by  the
remote processor.  The gathering from the source array
is random access, while the storing of the elements into
the  buffer  and  the  reading  of  indices  are  sequential
access.  In the bound method, no packing of the data is
needed, since the entire bounding box is sent.  Figure 4
shows  the  model  components.   N  is  the  number  of



distinct  elements  being  packed,  L1line and  L2line are
cache line sizes, and  α1,  α2 and  αmem are  latencies for
L1, L2, and memory, respectively.  Cache line sizes are
adjusted to match the word size in each formula.

To estimate the communication cost, we use a
piecewise linear model.  For large messages, the cost is
a fixed per message latency plus a per Byte bandwidth
cost.  We found that using this simple linear model for
small messages was not accurate enough, and instead
use different latency and  bandwidth terms in different
size ranges.  For example, in the GM network, the steps
are due to the 4KB MTU size of the packets.   Figure 5
shows how well our models fit the actual.  The average
error comparing our models with the actual on all three
machines is less than 1%. These latency and bandwidth
numbers are computed empirically for each machine.

Figure 5: comparing the latency bandwidth models
to actual on LAPI, GM, and Elan.

In practice, each processor may communicate
with multiple other processors, while our model is for a
single  pair  of  processors  and  does  not  account  for
network  contention.   The  number  of  simultaneous
communication  events  depends  on  the  application
characteristics.   While our point to point model does
not  capture  this  more  complex  communication
behavior,  we find it  is sufficient for selecting a good
communication  method,  as  we  will  show  in  the
performance section.

After  the  data  arrives  at  the  destination
processor, the data is read out of the buffer during the
executor  phase  in  a  random access  pattern.   In  our
model, we assume the costs for both methods are the

same,  although  the  bound  method  may  suffer  more
cache  misses  in  practice,  because  it  is  a  larger  data
buffer than in the pack case   

We pick the communication method that gives
the lowest  estimated cost  by adding the packing and
communication  cost  estimates.   A  choice  is  made
separately for  each  processor  pair.   A schedule  may
contain several pairs, since each processor may need to
communicate  with  several  remote  processors.   The
communication method selection automatically trades
off network bandwidth and cache misses.  By packing
the  needed  elements  into  a  buffer,  the  pack  method
uses a smaller message than the bounding box, but it
incurs more memory traffic for the packing process.   

8. Optimizing a Sparse Matrix Kernel

Indirect  array  accesses  and  the  irregular
memory  and  network  access  patterns  that  result  are
common in sparse matrix code. In this section we use a
sparse  matrix  kernel,  matrix  vector  multiplication,  to
evaluate our compiler  and runtime techniques, which
are entirely automatic.  In this case, the matrix is sparse
while both the source and result vectors are dense.

The parallel algorithm partitions the matrix by
rows, with each processor getting a contiguous block of
complete  rows.  Each  processor  also  holds  the
corresponding piece of  the result  vector,  so the only
communication that is required is on the source vector. 
Because the source vector is often computed from an
earlier result, it is partitioned in the same manner as the
result  vector.   Figure  6  illustrates  the  layout  of  the
matrix  in  the  case  with  eight  processors. 
Communication is only required for the source vector,
and only for those elements in which a processor holds
a  nonzero  outside  of the  processor’s  diagonal block.
The  off-diagonal  nonzero  shown  will  result  in
communication from P5 to P1, for example.

Figure 6: Parallel layouts of matrix and vectors

Due to the different nonzero structures of the
matrices, the communication requirements vary widely
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across matrices.  We therefore use a set of benchmark
matrices  from  real  applications  to  evaluate  our
optimizations.    Figure  7  gives  two  examples  to
illustrate  the  differences.   On  the  left  we  have  the
nemeth21 from Matrix Market [12].  It is a 9506x9506
matrix with 1173746 nonzeros.  Because the nonzeros
occur only near the diagonal, each processor needs to
communicate with at most two of its neighbors.  The
garon2 matrix on the right is taken from the UF Sparse
Matrix Collection and is a 2D finite element method
matrix [19].  The size is  13535x13535 and there are
390607 nonzeros.  There is more data communication
for this matrix than the previous one, because nonzeros
are  spread  throughout the matrix,  albeit  in  a  regular
pattern.  Every  processor  will  need  some  data  from
every other processor.  

Figure 7: Structure of nemeth21 (left) and garon2 (right)

8.1 Evaluating Each Optimization

We begin  by  analyzing  the  performance  of
several  different  Titanium implementations  using  the
garon2 matrix, which will highlight the differences in
communication  costs  between  the  versions.   The
Titanium source code is the same across the versions,
but the compiler and runtime support differ.  Figure 8
shows the  performance on  the  RTC Itanium/Myrinet
cluster using the GASNet implementation for Myrinet's
GM1 communication layer.    

Figure 8: performance on the garon2 matrix 
Naïve: With  the  naïve  version,  the  generated  code
uses a remote read for each indirect array access when
the array is  remote.    As expected,  the  performance
does not scale.

Pull:   The  next  line  shows the  benefit  of  an  initial
inspector  executor  optimization  on  this  code.   This
significantly  improves on  the  naïve  version,  because
data is packed into larger messages.   Remote gets are
used in this case to pull data from the remote parts of
the source vector. 

Push: The  next  three  versions  of  the  code  uses
remote puts instead of gets for communication.    On
Myrinet  GM1,  puts  are  significantly  faster  than  gets
because  puts  are  implemented  using  lower  level
RDMA support.   Pulling  requires  a  round-trip  with
remote work to pack the data, which requires that all
processors be attentive to the network.  The service of
the  packing  request  can  be  delayed  if  the  remote
processor is in the middle of a computation intensive
loop when the request arrives.

Model  vs  Pure:   The  three  push  lines  differ  in  the
choice  of  communication  mechanism.   One uses  the
bounding box approach throughout the machine, while
another uses packing throughout.     The third line uses
our performance model, which performs at least as well
as the best of the pure methods.  For some processor
configurations,  the  model  actually  chooses  a  mixed
strategy, such as in the 16 processors case.  In a mixed
strategy,  a  processor  communicates  with  some
neighbors using the bound method, and other neighbors
with the pack method.  This is the reason that we see
the  gap  between  the  model  performance  and  the
maximum  of  the  pure  method  performances.   This
result  shows  that  applying  the  inspector  executor
optimization manually at the source code level can be a
daunting  task.   Because  there  is  a  choice  of
communication  methods  between  each  pair  of
processors,  the  number  of  different  choice
configurations  grows exponentially as  the  number  of
neighbor  increases.   Furthermore,  the  search  for  the
best  configuration  would  have  to  be  done  for  each
combination of input and processor configuration.  We
believe that it is a much cleaner solution to develop a
performance model, and have the compiler to apply the
inspector  executor  optimization  automatically.   The
performance model only has to be developed once for a
given machine.

Overlap:   The  last  version  of  the  code  overlaps
communication with computation.  After  sending the
needed data  using non-blocking puts,  each processor
does its local computation with its nonzeros that do not
require  communication.   After  the  local  computation
completes,  the  processor  polls  on  the  arrival  of  the
remote data  as  they are  needed.   On some matrices,
there are sufficiently many nonzeros that do not require
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communication that by the time the processor needs the
incoming data, the data has already arrived.  In those
cases,  the  cost  of  communication  is  largely  hidden
behind the local computation.         

8.2. Comparison with an MPI Library

In this section we compare the best Titanium
implementation  using  the  performance  model  and
overlapped  communication  with  an  MPI
implementation  that  uses  the  same  basic  data  layout
and algorithm for sparse matrix-vector  multiplication.
The  MPI  implementation  is  from  a  popular  sparse
solver library called Aztec, which is written in C [16]. 

We use matrices from Matrix Market and the
UF Sparse Matrix Collection.  Table 2 lists some of the
matrices along with the dimensionality (all the matrices
are square) and the number of nonzeros.   

# Name Dim
(NxN)

Non-
zeros

Area

1 appu 14000 1853104 Structures
2 av41092 41092 1683902 Unknown
3 barrier2-1 113076 2129496 Physics 
4 bbmat 38744 1771722 Structures
5 cage12 130228 2032536 Biology 
6 cfd2 123440 3085406 Graphics
7 crystk02 13965 968583 Structures
8 crystk03 24696 1751178 Structures
9 lin 256000 1766400 Eigenval
10 nasasrb 54870 2677324 Structures
11 nemeth21 9506 1173746 Chemistry
12 nemeth22 9506 1358832 Chemistry
13 nemeth23 9506 1506810 Chemistry
14 nemeth24 9506 1506550 Chemistry
15 nemeth25 9506 1511758 Chemistry
16 nemeth26 9506 1511760 Chemistry
17 oilpan 73752 2148558 FEM
18 qa8fk 66127 1660579 FEM
19 qa8fm 66127 1660579 FEM
20 t3dh_a 79171 4352105 Physics
21 t3dh_e 79171 4352105 Physics
22 vanbody 47072 2329056 FEM

      Table 2: matrix characteristics

Programmability differences between C+MPI
and Titanium are difficult  to quantify.  The Titanium
code  contains  only  array  accesses  and  field
dereferences, whereas the MPI code has explicit send
and receive routines as well as code to pack required
source vector  elements into buffers.  Lines of  source
code, while far from perfect, may provide some insight
into the differences in programming difficulty.   The C

program using Aztec is 55% longer than the Titanium
code.  

We  performed  experiments  on  the  three
machines  described  earlier:  RTC,  Seaborg,  and
Lemieux.   The  Titanium implementation  uses  tuned
GASNet    implementations  for  each  of  the  three
message  layers:  GM1  on  Myrinet  (RTC),  Elan3  on
Quadrics  (Lemieux)  and  LAPI  on  the  IBM  SP
(Seaborg).  Aztec  uses  a  pure  packing  approach  for
communication.   We  use  different  processor
configurations from 1 to 16 processors, and always use
only  one  processor  per  node.  Extending  the
performance model to handle clusters of SMPs remains
as future work.  

Figures  9  through 11  show the average  and
maximum speedup of the Titanium version relative to
the Aztec version on 1 to 16 processors.  In general, the
Titanium version is faster,  sometimes by more than a
factor  of  2x.   Across  all  processor  configurations,
matrices,  and  machine,  the  Titanium  code  was  an
average  of  1.2x  faster  than  the  MPI  code.   The
speedups are highest  on the Myrinet  machine,  where
the RDMA support used by GASnet is most significant.
The  Quadrics  network  is  fast  for  both  MPI  and
GASNet,  and  for  matrices  with  less  communication,
you  see  little  difference  between  the  two languages.
There are some cases where the MPI code outperforms
the Titanium code,  usually on smaller problem sizes.
We  continue  to  investigate  issues  related  to  barrier
performance and serial  code  differences that  account
for these slowdowns, and presumable additional tuning
for these machines may also be possible in the Aztec
code.  

 Our overall summary is that the performance
of the Titanium code is usually better than that of MPI
and from the analysis in section 8.1, we can attribute
these  differences  to  the  combination  of  the  RDMA
support  in GASNet,  avoiding the cost  of packing for
some matrices, and the use of a performance model to
select the best communication mechanism for each pair
of  processors,  and  the  effectiveness  of  the  overlap
using the RDMA communication model.

 9. Conclusions

In this paper, we have described an automatic
transformation of programs with indirect array accesses
in  Titanium to  take  advantage  of  inspector  executor
style  optimizations.   We  introduced  a  performance
modeling technique to select communication methods
using  a  combination  of  data  collected  at  compiler
install  time  and  runtime  information  about  the
application’s access patterns.  This allows application
programmers  to  write  Titanium  code  in  a
straightforward  way and  obtain performance superior
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to  a  popular  hand-tuned library.   In particular,  for  a
sparse matrix vector multiply problem, we showed that
not  only  is  the  program  more  concise,  but  the
optimized Titanium code  is  up to  2.25x  faster.    In
future  work  we plan  to  extend  the  optimizations  to
multidimensional arrays, and analyze its usefulness for
particle-mesh  methods  as  well  as  extending  the
communication  performance model  to  handle  hybrid
shared and distributed memory machines.  

These results show the feasibility of using a
high  level  language  for  high  performance  scientific
programming on programs with indirect array accesses
on  remote  arrays.   In  other  papers  we  have
demonstrated the use of Titanium on large applications,
including  a  heart  simulation  [22]  and  adaptive  mesh
refinement [21]  problems.   The  use  of  a  high  level
parallel language enables compiler optimizations, like
the one described  in this  paper,  that  cannot be  done
automatically in a library-based approach like MPI. 

10. References

[1]  S. Baden,  and S. Fink, “The Data Mover: A Machine-
Independent  Abstraction  for  Managing  Customized  Data
Motion”, LCPC, 1999.
[2] H. Berryman, and J. Saltz, “A manual for PARTI runtime
primitives”, 1990.
[3]  S.  Benkner,  “Optimizing  Irregular  HPF  Applications
Using Halos”, Irregular, 1999.
[4] D. Bonachea, “GASNet specifications”, 2003.
[5] S. Chakrabarti, J. Demmel, and K. Yelick, “Modeling the
benefits of mixed data and task parallelism”,  Symposium on
Parallel Algorithms and Architectures, 1995.
[6] R. Das, J. Saltz, and R. v. Hanxleden, “Slicing analysis
and  indirect  accesses  to  distributed  arrays”,  Workshop  on
Languages and Compilers for Parallel Computing, 1993.
[7]  R.  Das,  M.  Uysal,  J.  Saltz,  and  Y.  Hwang,
“Communication  optimizations  for  irregular  scientific
computations on distributed memory architectures”, Journal
of Parallel and Distributed Computing, 1993.
[8]  J.  Gosling,  B.  Joy, and G. Steele,  “The Java language
specification”, 2000.
[9] R. v. Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J.
Saltz, “Compiler Analysis for Irregular Problems in Fortran
D”,  Workshop  on  Languages  and  Compilers  for  Parallel
Computing, 1992.
[10]  P.  Hilfinger  et  al,  “Titanium  language  reference
manual”, 2001.
[11]  C.  Koelbel,  P.  Mehrotra,  and  J.  Van  Rosendale,
“Supporting  shared  data  structures  on  distributed  memory
machines”,  Symposium  on  Principles  and  Practice  of
Parallel Programming, 1990.
[12] Matrix Market, http://math.nist.gov/MatrixMarket.
[13]  G.  Pike,  and  P.  Hilfinger,  “Reordering  and  Storage
Optimizations  for  Scientific  Programs”,  Supercomputing,
2002.

[14] S. Sharma, R. Ponnusamy, B. Moon, Y. Hwang, R. Das,
and  J.  Saltz,  “Run-time  and  compile-time  support  for
adaptive irregular problems”, Supercomputing, 1994.
[15]  M.  Strout,  L.  Carter,  and  J.  Ferrante,  “Compile-time
composition  of  run-time  data  and  iteration  reorderings”,
Programming Language Design and Implementation, 2003.
[16] R. Tuminaro, M. Heroux, S. Hutchinson, and J. Shadid,
“Official Aztec user's guide: version 2.1”, 1999.
[17]  S. Vadhiyar, G. Fagg, and J. Dongarra, “Performance
Modeling for Self Adapting Collective Communications for
MPI”, LACSI Symposium, 2001.
[18]  J.  Wu,  J.  Saltz,  H.  Berryman,  and  S.  Hiranandani,
“Distributed memory compiler design for sparse problems”,
1991.
[19]  UF  Sparse  Matrix  Collection,
http://www.cise.ufl.edu/research/sparse/matrices.
[20]  D.  Walker,  “The  Implementation  of  a  Three-
Dimensional  PIC  Code  on  a  Hypercube  Concurrent
Processor”,  Conference  on  Hypercubes,  Concurrent
Computers, and Application, 1989.
[21] T. Wen, and P. Colella, “Adaptive Mesh Refinement in
Titanium”, IPDPS, 2005.
[22] S. Yau, “Experiences in Using Titanium for Simulation
of Immersed Boundary Biological Systems”, 2002.
[23]  K.  Yelick,  L.  Semenzato,  G.  Pike,  C.  Miyamoto,  B.
Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P.
Colella, and A. Aiken, “Titanium: A high-performance Java
dialect”,  Workshop on Java for High-Performance Network
Computing, 1998.

Acknowledgement

       This  work  was  supported  in  part  by  the
Department  of  Energy under  DE-FC03-01ER25509,
by  the  National  Science  Foundation  under  ACI-
9619020,  ACI-0090127,  and  CNS-0325873,  by  the
California  State  MICRO  Program,  by  Sun
Microsystems,  and  by  an  NDSEG  fellowship.
Experiments were performed on facilities provided by
Rice  University,  the  National  Energy  Research
Scientific  Computing  Center,  and the  Pittsburgh
Supercomputing Center.  Thanks go to the members of
the Titanium research group,  who provided  valuable
suggestions  and  feedbacks  on  this  work.  We would
also like to thank the anonymous reviewers for their
helpful comments on the original submission.


