
Automatic Support for Irregular Computations in a High-Level Language

Jimmy Su and Katherine Yelick
Computer Science Division, University of California at Berkeley

{jimmysu,yelick}@cs.berkeley.edu

Abstract

The problem of writing high performance parallel
applications becomes even more challenging when
irregular, sparse or adaptive methods are employed.
In this paper we introduce compiler and runtime
support for programs with indirect array accesses into
Titanium, a high-level language that combines an
explicit SPMD parallelism model with implicit
communication through a global shared address
space. By combining the well-known inspector-
executor technique with high level multi-dimensional
array constructs, compiler analysis and performance
modeling, we demonstrate optimizations that are
entirely hidden from the programmer. The global
address space makes the programs easier to write than
in message passing, with remote array accesses used
in place of explicit messages with data packing and
unpacking. The programs are also faster than
message passing programs: Using sparse matrix-
vector multiplication programs, we show that the
Titanium code is an average of 21% faster across
several matrices and machines, with the best case
speedup more than a factor of 2x. The performance
advantages are due to both the lightweight RDMA
(Remote Direct Memory Access) communication model
that underlies the Titanium implementation and
automatic optimization selection that adapts the
communication to the machine and workload, in some
cases using different communication models for
different processors within a single computation.

1. Introduction

Application scientists increasingly employ
irregular data structures such as unstructured grids,
particle-mesh structures, adaptive meshes and sparse
matrices in an effort to obtain more computationally
efficient methods. These methods are not well
supported by popular high performance programming
models, because they lead to indirect array accesses,
pointer-based data structures, and communication that

is unpredictable in both timing and volume. Titanium
[23] is a JavaTM-based language designed for high
performance computing, with a shared address space to
ease programming of pointer-based data structures and
a powerful multidimensional array abstraction that has
proven useful in both adaptive and non-adaptive block-
structured algorithms.

In this paper we propose new compiler and
runtime extensions for the Titanium implementation to
support programs with indirect array accesses, such as
A[B[i]], where the A array may live in a remote
processor’s memory. These computations arise in
sparse iterative solvers, particle-mesh methods, and
elsewhere. We add compiler support for an inspector-
executor execution model, which optimizes
communication performing runtime optimization based
on the dynamic pattern of indices in the indirection
array, which is B in the previous example. There are
several possible transformations that can be done on
the communication, and we consider three in this
paper: sending the entire remote array, sending exactly
those elements that are needed, and sending a bounding
box of the required values. While packing is
guaranteed to send the minimal number of actual
values, it has a higher metadata overhead and is
therefore not necessarily optimal. One of the
challenges is to select the best communication
transformation, because it depends on properties of the
application and the machine. We introduce a simple
analytical performance model into the compiler, which
selects optimizations automatically.

We analyze the benefits of the automated
inspector-executor transformation using sparse matrix-
vector multiplication on a set of matrices from real
applications. Our results show that although the
program is significantly simpler when written in
Titanium, because it avoids the explicit communication
code and the pack and unpack code, the performance is
almost always superior to a popular MPI message
passing code. The speedup relative to MPI on a suite
of over 20 matrices averages 21% on three different
machines, with the maximum speedup of more than 2x.
The model-based optimization selection is critical to
both programmability and performance. Not only does

the model select optimizations that differ by matrix and
machine, but also differ between processors within a
single matrix-vector multiplication. This runtime
complexity is entirely hidden from the programmer,
making the application both cleaner and faster.

2. Related Work

The idea of inspector executor optimizations
for scientific codes is not new. Walker proposed and
implemented the idea of using a pre-computed
communication schedule for indirect array accesses to
distributed arrays in a Particle-In-Cell application [20].
The idea is widely used in application codes today,
where it is programmed manually. Use of the technique
with compiler and library support was developed by
Berryman and Saltz. The PARTI runtime library [2]
and its successor CHAOS [14] provided primitives for
application programmers to apply the inspector
executor optimization on the source level. The same
research group provided the dataflow framework to
determine where a communication schedule can be
generated, where communication operations are placed,
and when schedules can be combined [9]. As an
experimental result, they manually carried out the
optimizations that would have been suggested by the
dataflow framework. The ARF [18] and KALI [11]
compilers were able to automatically generate inspector
executor pairs for simply nested loops. Slicing analysis
was developed to extend the inspector executor
paradigm to multiple level of indirection [6]. More
recently, the inspector executor technique was used to
develop runtime reordering of data and computation
that enhance memory locality in applications with
sparse data structures [15].

Benkner [3] introduces the concept of halos
in HPF for the programmers to specify non-local access
patterns to distributed arrays, and control the
communication associated with these array accesses.
Kelp [1] allows the programmers to use the
MotionPlan object to do inspector executor
communication. Unlike those two approaches, the
optimizations we will describe in this paper are entirely
hidden from the programmer.

There have been numerous research works in
the area of communication scheduling. Chakrabarti et
al. [5] implemented an algorithm for optimizing
communication schedules across loops in a global
manner in the HPF compiler. Dongarra et al. [17] gave
techniques for performance modeling collective
communications.

The work presented in this paper extends the
inspector executor line of research by looking at the
problem of selecting the best communication method.
Our work is done in the context of a high level

language with a global address space. Our compiler is
able to automatically generate code that can accurately
choose the best communication method during runtime
based on an integrated performance model.

3. Titanium

Titanium is a dialect of Java, but does not use
the Java Virtual Machine model. Instead, the end
target is assembly code. During compilation, Titanium
code is translated into C code, and then a C compiler
compiles the generated C code. C is used as an
intermediate step for portability. In addition to
generating C code to run on each processor, the
compiler generates calls to a runtime layer based on the
GASNet [4] communication layer. GASNet uses
lightweight communication, exploiting hardware
support for direct remote reads and writes when it
exists. Titanium runs on a wide range of platforms,
including uniprocessors, shared memory machines,
distributed-memory clusters of uniprocessors or SMPs
(CLUMPS), and a number of specific supercomputer
architectures (Cray X1, Cray T3E, SGI Altix, IBM SP,
Origin 2000, and NEC SX6).

3.1. Memory Consistency Model

Titanium inherits many features of Java, one
of which is the Java memory consistency model [8].
Titanium’s interpretation of the Java memory
consistency model is defined in the language
specification [10]. Here are some informal properties
of the Titanium model.
• Locally sequentially consistent: All reads and

writes issued by a given processor must appear to
that processor to occur in exactly the order
specified. Thus, dependencies within a processor
stream must be observed.

• Globally consistent at synchronization events: At a
global synchronization event, such as a barrier, all
processors must agree on the values of all the
variables. At a non-global synchronization event,
such as entry into a critical section, the processor
must see all previous updates made using that
synchronization event.

The first property implies that a processor must be able
to read its own writes. If a processor writes to array
elements that have been prefetched from a remote
location into a local buffer, subsequent reads by that
processor must return the new value. The second
property makes data prefetched prior to a
synchronization point unusable after that
synchronization point. The prefetched data may have
been changed by other processors, and reads after the

synchronization point must reflect those changes. This
property prevents code motion past synchronization
points.

3.2. Foreach Loop

The SPMD model in Titanium means that an
instance of the program is run on some number of
processors, which is specified at program startup time.
Each copy of the program runs independently, without
implied global synchronization.

Our transformation targets the built-in foreach
loops in Titanium. A foreach loop has the form

foreach (p in D) S
where the iteration space D is a rectangular set of
Points, where a Point is a n-tuple for an n-dimensional
array. S any sequence of statements. The loop’s
semantics specifies that the body, S, be executed |D|
times with p bound to each element of D in each
iteration, but no particular execution order is required.
The foreach loop is a local loop executed by a single
processor, whereas the parallelism is at a higher level
through the SPMD model. Titanium compiler does
extensive analysis and optimizations for foreach loops
[13].

4. Source Code Transformation

In this section, we give motivations for the
optimizations later in the paper using source code
transformation on a simple example. The simple
example is the indirect sum benchmark in Figure 1.

The example illustrates the case for two processors.
But it can easily be extended for more processors. A is
an array that resides on processor 1, and B is an index
array owned by processor 0 for accessing array A.
When processor 0 reads A[B[i]], it requires
communication, because A resides on processor 1.
Analogously, C is an array on processor 0, and D is an
index array owned by processor 1 for accessing array
C.

In Figure 2, we introduce buffers into the
indirect sum benchmark. The buffers are local to each
processor. The values of each indirect array access are

stored in the buffer, and subsequently used in the
second loop.

In Figure 1 and Figure 2, the communication
uses a pull strategy. Each processor gets the data it
needs from the remote processor that owns the data.
The next source code transformation in Figure 3 uses a
push strategy instead. The code makes the assumption
that processor 0 knows what data processor 1 needs
from itself, and the location of the buffer on processor
1 to store this data. The same assumption applies to
processor 1. In the push strategy, data is put to the
processor that needs it.

Two questions arise from these source code

transformations. The first question is when is it legal to
apply these transformations. The second question is
how do these transformations give us the desired
speedup. These questions will be addressed later in the
paper.

5. Compile Time Transformations

5.1. Identify Inspector Executor Candidates

The first step is to identify inspector executor
candidates for indirect array accesses A[B[i]]. Below
is the list of the conditions that the compiler checks for:
• B and B[i] do not change inside of the loop.
• A and A[i] do not change inside of the loop.
• There are no synchronization points inside of the

foreach loop, since the memory model requires
memory to be globally consistent at a
synchronization point.

Processor 0 Processor 1

for (i=0; i<n; i++){
 buffer1[i] = C[D[i]];
}
for (i=0; i<n; i++){
 sum += buffer0[i];
}

Figure 3: indirect sum benchmark on two
processors using push strategy

for (i=0; i<n; i++){
 buffer0[i] = A[B[i]];
}
for (i=0; i<n; i++){
 sum += buffer1[i];
}

Processor 0 Processor 1

for (i=0; i<n; i++){
 buffer0[i] = A[B[i]];
}
for (i=0; i<n; i++){
 sum += buffer0[i];
}

Figure 2: indirect sum benchmark on two
processors with local buffers

for (i=0; i<n; i++){
 buffer1[i] = C[D[i]];
}
for (i=0; i<n; i++){
 sum += buffer1[i];
}

Processor 0 Processor 1

for (i=0; i<n; i++){
 sum += A[B[i]];
}

Figure 1: indirect sum benchmark on two
processors

for (i=0; i<n; i++){
 sum += C[D[i]];
}

After identifying the candidates, the compiler
performs the inspector executor transformation. In the
inspector phase, the array address for each A[B[i]] is
computed. The computed values are stored in an index
array. After the inspector phase, a communication
method is chosen to retrieve the remote data into a
local buffer. More details on the choice of the
communication method are presented in Section 7.
The set of array addresses together with the
communication method are stored in a communication
schedule. In the executor loop, values for each A[B[i]]
are read out of the local buffer.

In some applications, the same pattern of
indirect array accesses happens over multiple
iterations. One example is an iterative solver. In this
case, we would like to store the communication
schedule computed during the inspector phase of the
first iteration, and reuse the communication schedule
on other iterations. A communication schedule may
contain information for one or more sets of indirect
array accesses to remote arrays. For each set of array
accesses, the computed array addresses and the choice
of communication method are stored in the schedule.
Schedule reuse has been used in prior work, but our
schedules contain additional information about the
communication method to be employed.

The three properties are sufficient for ensuring
the soundness of the inspector executor transformation.
First we show that the values read for B[i] are the same
for both versions of the program. If B and B[i] do not
change during the execution of the loop, then the
values read for B[i] in the inspector are the same as the
ones in the original loop. B can only change locally,
because it is a pointer on the local processor. The
changes to B[i] can either come locally or remotely.
We know that there are no local changes, because we
check that B and B[i] are loop invariant using defuse
information. Remote changes to B[i] are possible,
since any of the remote processors can be executing
code that modifies B[i] while the local processor is
inside the loop. If we take a snap shot of memory
where the B[i]’s reside before the local processor
enters the loop, we can use the values from the snap
shot for B[i]’s inside the loop regardless if there are
changes to B[i] remotely. The reason is that there is no
synchronization event inside the loop, so any remote
changes to B[i] during the execution of the loop do not
need to be reflected under the Titanium memory
consistency model. Any writes to B[i] remotely while
the local processor is executing this loop would
constitute a race condition.

Now we know the index sets for both versions
are the same. We would like to show that the values
read from A using this index set are the same for both
versions of the program. The argument is similar to the
previous step. We know that there are no local changes

to A or A[i] using defuse information. Changes to A[i]
caused by remote processors during the loop do not
need to be reflected, because there is no
synchronization event inside the loop.

The requirement that A[i] is not modified by
the processor executing the loop can be relaxed. The
processor executing the loop has access to the buffer
that contains the prefetched values of A[B[i]]. The
runtime can conceivably intercept all writes to A[i]
from this processor in the loop, and reflect the changes
to the values in the buffer. Our experiments show that
this relaxation is not worthwhile.

5.2. Pull to Push Transformation

Now we know the requirements for applying
the inspector executor transformation. In this section,
we turn our attention to the issue of using the push
strategy instead of the pull strategy for communication.
Extra coordination between processors is needed to use
the push strategy. In the case where the schedule can
be reused, we would like to communicate the index set
and the choice of communication method during the
first iteration, and have the processor that owns the data
to send the needed data in the subsequent iterations
independently. The push strategy uses about half as
many messages as the pull strategy. The pull strategy
also suffers when the remote processor is not attentive
to the network. The communication is not entirely one-
sided, because remote packing is required, so if the
remote processor is in a computation intensive loop,
other processors may be delayed waiting for it.

The extra coordination means that the
communication calls need to be placed in the right
place so that the data will be coming when it is
expected. It is the job of the compiler to find the right
place in the code to insert these communication calls,
since we are applying the optimizations automatically
without hints from the application programmer.

The communication calls need to be placed in
such a way that when a processor is about to enter the
loop that contains the inspector executor array access,
the expected data is on its way from the remote
processor. The processor can simply poll on a flag for
the arrival of the data.

In Titanium, a barrier statement is executed by
all the processors at the same time for the same number
of times. A barrier that is executed by a subset of the
processors would cause deadlock. The Titanium
compiler provides a static analysis called single
analysis that eliminates this type of bugs. It
conservatively rejects all programs that might run into
deadlocks due to misplaced barriers at compile time.

We use single analysis to help us in finding
the right place to insert the communication calls. The

property that we are looking for is that whenever a
processor is about to enter the loop containing the
inspector executor array access, the processor that
owns the needed data would execute the
communication calls to send the data over. In the top
of the loop that contains the inspector executor array
access, we insert a barrier node in the control flow
graph. Then we run single analysis on this modified
control flow graph. Single analysis tells us if it is safe
to place the barrier in the top of the loop. If it is not
safe, then it is not safe to place the communication calls
there, because the processor that needs the data and the
processor that owns the data may come to the top of the
loop at different times or for different number of times.
If single analysis tells us that it is safe to place a barrier
in the top of the loop, then we can place the
communication calls there, because we are certain that
all processors would come to the top of the loop around
the same time for the same number of times. After
running single analysis, we remove the barrier node
from the control flow graph.

5.3. Overlap

Our generated code utilizes two types of
overlap: communication with communication, and
communication with computation. When a processor
owns data that is needed by multiple remote
processors, non-blocking puts are used to push the
needed data to the remote processors. While waiting
for the remote data to arrive, we can overlap the
computation that only involves local elements or
computation with elements that have already arrived.

6. Experimental Platforms

We performed experiments on three parallel
machines and developed a performance model for the
communication on each of them. The first, RTC, is a
cluster of Itanium processors connected by a Myrinet
network at Rice University. The second is an IBM
Power3 system, Seaborg, which is at NERSC, and the
last, Lemiuex, is an HP system at PSC. Table 1
contains a summary of their key features.

Name System Network CPU
RTC Linux cluster Myrinet

2000
900 MHz
Itanium 2

Seaborg IBM RS/6000 SP SP Colony
Switch 2

375 MHz
Power 3+

Lemieux Compaq
Alphaserver ES45

Quadrics
Elan3

1 GHz
Alpha

Table 1: machine summary

7. Runtime Selection of Communication

With a set of indirect array accesses to a
remote array, there are several options for performing
the data communication. The options are listed below:

• Pack method: only communicates the needed
elements without duplicates. The needed
elements are packed into a buffer before sending
them to the processor that needs the data.

• Bound method: use a bulk put operation to send
a bounding box that contains the needed
elements.

• Bulk method: use a bulk put operation to send
the entire array.

The three methods require different amount of
set up work. The pack method needs to run the
inspector phase to translate all the indirect array
accesses into remote addresses and the bound method
needs to run the inspector phase to compute the
bounding box that contains all the needed elements.
The bulk method does not require an inspector phase.

In this paper, we focus on the case where the
communication pattern is repeated several times, in
which case the cost of the inspector is amortized, so we
always run the inspector in the first iteration. In this
scenario the bulk method becomes a special case of the
bounding box method, so we only discuss the pack and
bound methods in the remainder of this paper.

Our experiments show that the choice of
communication is both application and machine
specific. The application determines the size of the
array, number of accesses to that array, and the size of
the bounding box. The machine gives different
memory and communication costs. Our compiler
generates code that can choose the best communication
method at runtime based on a performance model.

The total time of a communication method
consists of three parts:
1. the time spent on getting the data ready for

communication in the remote processor
2. the communication time for sending the data
3. the time for reading the data out of local buffer in

the executor loop
Both 1 and 3 are local processor costs, which

are dominated by memory access times. We use cache
and memory latency numbers provided by the vendor
in a performance model. In the pack method, the
needed elements are gathered into a buffer by the
remote processor. The gathering from the source array
is random access, while the storing of the elements into
the buffer and the reading of indices are sequential
access. In the bound method, no packing of the data is
needed, since the entire bounding box is sent. Figure 4
shows the model components. N is the number of

distinct elements being packed, L1line and L2line are
cache line sizes, and α1, α2 and αmem are latencies for
L1, L2, and memory, respectively. Cache line sizes are
adjusted to match the word size in each formula.

To estimate the communication cost, we use a
piecewise linear model. For large messages, the cost is
a fixed per message latency plus a per Byte bandwidth
cost. We found that using this simple linear model for
small messages was not accurate enough, and instead
use different latency and bandwidth terms in different
size ranges. For example, in the GM network, the steps
are due to the 4KB MTU size of the packets. Figure 5
shows how well our models fit the actual. The average
error comparing our models with the actual on all three
machines is less than 1%. These latency and bandwidth
numbers are computed empirically for each machine.

Figure 5: comparing the latency bandwidth models
to actual on LAPI, GM, and Elan.

In practice, each processor may communicate
with multiple other processors, while our model is for a
single pair of processors and does not account for
network contention. The number of simultaneous
communication events depends on the application
characteristics. While our point to point model does
not capture this more complex communication
behavior, we find it is sufficient for selecting a good
communication method, as we will show in the
performance section.

After the data arrives at the destination
processor, the data is read out of the buffer during the
executor phase in a random access pattern. In our
model, we assume the costs for both methods are the

same, although the bound method may suffer more
cache misses in practice, because it is a larger data
buffer than in the pack case

We pick the communication method that gives
the lowest estimated cost by adding the packing and
communication cost estimates. A choice is made
separately for each processor pair. A schedule may
contain several pairs, since each processor may need to
communicate with several remote processors. The
communication method selection automatically trades
off network bandwidth and cache misses. By packing
the needed elements into a buffer, the pack method
uses a smaller message than the bounding box, but it
incurs more memory traffic for the packing process.

8. Optimizing a Sparse Matrix Kernel

Indirect array accesses and the irregular
memory and network access patterns that result are
common in sparse matrix code. In this section we use a
sparse matrix kernel, matrix vector multiplication, to
evaluate our compiler and runtime techniques, which
are entirely automatic. In this case, the matrix is sparse
while both the source and result vectors are dense.

The parallel algorithm partitions the matrix by
rows, with each processor getting a contiguous block of
complete rows. Each processor also holds the
corresponding piece of the result vector, so the only
communication that is required is on the source vector.
Because the source vector is often computed from an
earlier result, it is partitioned in the same manner as the
result vector. Figure 6 illustrates the layout of the
matrix in the case with eight processors.
Communication is only required for the source vector,
and only for those elements in which a processor holds
a nonzero outside of the processor’s diagonal block.
The off-diagonal nonzero shown will result in
communication from P5 to P1, for example.

Figure 6: Parallel layouts of matrix and vectors

Due to the different nonzero structures of the
matrices, the communication requirements vary widely

Message Performance Model

0
5

10
15
20
25
30
35
40
45
50

8 256 512 768 1024 1280 1536 1792 2048
Message Size (Bytes)

Ti
m

e
(u

se
c)

LAPI Actual LAPI Model
GM Actual GM Model
Elan Actual Elan Model LAPI

GM

Elan

P0
P1
P2
P3
P4
P5
P6
P7

re
su

lt

source
P0 P1 P2 P3 P4 P5 P6 P7

buffer gather:
Nα1 + N / (L1line)(α2 - α1) + N / (L2line)*(αmem - α2)

index read:
Nα1 + N / (L1line)(α2 - α1) + N / (L2line)*(αmem - α2)

source:
if (source fits in L1) then Nα1

else if (source fits in L2) then Nα2

else Nαmem

Figure 4: performance model for packing

across matrices. We therefore use a set of benchmark
matrices from real applications to evaluate our
optimizations. Figure 7 gives two examples to
illustrate the differences. On the left we have the
nemeth21 from Matrix Market [12]. It is a 9506x9506
matrix with 1173746 nonzeros. Because the nonzeros
occur only near the diagonal, each processor needs to
communicate with at most two of its neighbors. The
garon2 matrix on the right is taken from the UF Sparse
Matrix Collection and is a 2D finite element method
matrix [19]. The size is 13535x13535 and there are
390607 nonzeros. There is more data communication
for this matrix than the previous one, because nonzeros
are spread throughout the matrix, albeit in a regular
pattern. Every processor will need some data from
every other processor.

Figure 7: Structure of nemeth21 (left) and garon2 (right)

8.1 Evaluating Each Optimization

We begin by analyzing the performance of
several different Titanium implementations using the
garon2 matrix, which will highlight the differences in
communication costs between the versions. The
Titanium source code is the same across the versions,
but the compiler and runtime support differ. Figure 8
shows the performance on the RTC Itanium/Myrinet
cluster using the GASNet implementation for Myrinet's
GM1 communication layer.

Figure 8: performance on the garon2 matrix
Naïve: With the naïve version, the generated code
uses a remote read for each indirect array access when
the array is remote. As expected, the performance
does not scale.

Pull: The next line shows the benefit of an initial
inspector executor optimization on this code. This
significantly improves on the naïve version, because
data is packed into larger messages. Remote gets are
used in this case to pull data from the remote parts of
the source vector.

Push: The next three versions of the code uses
remote puts instead of gets for communication. On
Myrinet GM1, puts are significantly faster than gets
because puts are implemented using lower level
RDMA support. Pulling requires a round-trip with
remote work to pack the data, which requires that all
processors be attentive to the network. The service of
the packing request can be delayed if the remote
processor is in the middle of a computation intensive
loop when the request arrives.

Model vs Pure: The three push lines differ in the
choice of communication mechanism. One uses the
bounding box approach throughout the machine, while
another uses packing throughout. The third line uses
our performance model, which performs at least as well
as the best of the pure methods. For some processor
configurations, the model actually chooses a mixed
strategy, such as in the 16 processors case. In a mixed
strategy, a processor communicates with some
neighbors using the bound method, and other neighbors
with the pack method. This is the reason that we see
the gap between the model performance and the
maximum of the pure method performances. This
result shows that applying the inspector executor
optimization manually at the source code level can be a
daunting task. Because there is a choice of
communication methods between each pair of
processors, the number of different choice
configurations grows exponentially as the number of
neighbor increases. Furthermore, the search for the
best configuration would have to be done for each
combination of input and processor configuration. We
believe that it is a much cleaner solution to develop a
performance model, and have the compiler to apply the
inspector executor optimization automatically. The
performance model only has to be developed once for a
given machine.

Overlap: The last version of the code overlaps
communication with computation. After sending the
needed data using non-blocking puts, each processor
does its local computation with its nonzeros that do not
require communication. After the local computation
completes, the processor polls on the arrival of the
remote data as they are needed. On some matrices,
there are sufficiently many nonzeros that do not require

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
procs

M
Fl

op
s

push model overlap
push model
push pack
push bound
pull
naïve

communication that by the time the processor needs the
incoming data, the data has already arrived. In those
cases, the cost of communication is largely hidden
behind the local computation.

8.2. Comparison with an MPI Library

In this section we compare the best Titanium
implementation using the performance model and
overlapped communication with an MPI
implementation that uses the same basic data layout
and algorithm for sparse matrix-vector multiplication.
The MPI implementation is from a popular sparse
solver library called Aztec, which is written in C [16].

We use matrices from Matrix Market and the
UF Sparse Matrix Collection. Table 2 lists some of the
matrices along with the dimensionality (all the matrices
are square) and the number of nonzeros.

Name Dim
(NxN)

Non-
zeros

Area

1 appu 14000 1853104 Structures
2 av41092 41092 1683902 Unknown
3 barrier2-1 113076 2129496 Physics
4 bbmat 38744 1771722 Structures
5 cage12 130228 2032536 Biology
6 cfd2 123440 3085406 Graphics
7 crystk02 13965 968583 Structures
8 crystk03 24696 1751178 Structures
9 lin 256000 1766400 Eigenval
10 nasasrb 54870 2677324 Structures
11 nemeth21 9506 1173746 Chemistry
12 nemeth22 9506 1358832 Chemistry
13 nemeth23 9506 1506810 Chemistry
14 nemeth24 9506 1506550 Chemistry
15 nemeth25 9506 1511758 Chemistry
16 nemeth26 9506 1511760 Chemistry
17 oilpan 73752 2148558 FEM
18 qa8fk 66127 1660579 FEM
19 qa8fm 66127 1660579 FEM
20 t3dh_a 79171 4352105 Physics
21 t3dh_e 79171 4352105 Physics
22 vanbody 47072 2329056 FEM

 Table 2: matrix characteristics

Programmability differences between C+MPI
and Titanium are difficult to quantify. The Titanium
code contains only array accesses and field
dereferences, whereas the MPI code has explicit send
and receive routines as well as code to pack required
source vector elements into buffers. Lines of source
code, while far from perfect, may provide some insight
into the differences in programming difficulty. The C

program using Aztec is 55% longer than the Titanium
code.

We performed experiments on the three
machines described earlier: RTC, Seaborg, and
Lemieux. The Titanium implementation uses tuned
GASNet implementations for each of the three
message layers: GM1 on Myrinet (RTC), Elan3 on
Quadrics (Lemieux) and LAPI on the IBM SP
(Seaborg). Aztec uses a pure packing approach for
communication. We use different processor
configurations from 1 to 16 processors, and always use
only one processor per node. Extending the
performance model to handle clusters of SMPs remains
as future work.

Figures 9 through 11 show the average and
maximum speedup of the Titanium version relative to
the Aztec version on 1 to 16 processors. In general, the
Titanium version is faster, sometimes by more than a
factor of 2x. Across all processor configurations,
matrices, and machine, the Titanium code was an
average of 1.2x faster than the MPI code. The
speedups are highest on the Myrinet machine, where
the RDMA support used by GASnet is most significant.
The Quadrics network is fast for both MPI and
GASNet, and for matrices with less communication,
you see little difference between the two languages.
There are some cases where the MPI code outperforms
the Titanium code, usually on smaller problem sizes.
We continue to investigate issues related to barrier
performance and serial code differences that account
for these slowdowns, and presumable additional tuning
for these machines may also be possible in the Aztec
code.

 Our overall summary is that the performance
of the Titanium code is usually better than that of MPI
and from the analysis in section 8.1, we can attribute
these differences to the combination of the RDMA
support in GASNet, avoiding the cost of packing for
some matrices, and the use of a performance model to
select the best communication mechanism for each pair
of processors, and the effectiveness of the overlap
using the RDMA communication model.

 9. Conclusions

In this paper, we have described an automatic
transformation of programs with indirect array accesses
in Titanium to take advantage of inspector executor
style optimizations. We introduced a performance
modeling technique to select communication methods
using a combination of data collected at compiler
install time and runtime information about the
application’s access patterns. This allows application
programmers to write Titanium code in a
straightforward way and obtain performance superior

��������	�
 ���� �
 � � � ��� �

 � ��� � � �� ��� ��� �� ��� � ��
 �� � � �� � ��� �� � �� �� �� �� ��� ����

Lemieux Speedup Comparison

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

matrix number

sp
ee

du
p

average speedup maximum speedup

�������� � 	�
 ���� �
 � � � ��� �

 � ��� � � �� ��� ��� �� ��� � ��
 �� � � �� � ��� �� � �� �

 � � �� �
 � � ��! ���

Seaborg Speedup Comparison

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

matrix number

sp
ee

du
p

average speedup maximum speedup

�������� � 	�
 ���� �
 � � � ��� �

 � ��� � � �� ��� ��� �� ��� � ��
 �� � � �� � ��� �� � �"# $ �% & �

RTC Speedup Comparison

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

matrix number

sp
ee

du
p

average speedup maximum speedup

to a popular hand-tuned library. In particular, for a
sparse matrix vector multiply problem, we showed that
not only is the program more concise, but the
optimized Titanium code is up to 2.25x faster. In
future work we plan to extend the optimizations to
multidimensional arrays, and analyze its usefulness for
particle-mesh methods as well as extending the
communication performance model to handle hybrid
shared and distributed memory machines.

These results show the feasibility of using a
high level language for high performance scientific
programming on programs with indirect array accesses
on remote arrays. In other papers we have
demonstrated the use of Titanium on large applications,
including a heart simulation [22] and adaptive mesh
refinement [21] problems. The use of a high level
parallel language enables compiler optimizations, like
the one described in this paper, that cannot be done
automatically in a library-based approach like MPI.

10. References

[1] S. Baden, and S. Fink, “The Data Mover: A Machine-
Independent Abstraction for Managing Customized Data
Motion”, LCPC, 1999.
[2] H. Berryman, and J. Saltz, “A manual for PARTI runtime
primitives”, 1990.
[3] S. Benkner, “Optimizing Irregular HPF Applications
Using Halos”, Irregular, 1999.
[4] D. Bonachea, “GASNet specifications”, 2003.
[5] S. Chakrabarti, J. Demmel, and K. Yelick, “Modeling the
benefits of mixed data and task parallelism”, Symposium on
Parallel Algorithms and Architectures, 1995.
[6] R. Das, J. Saltz, and R. v. Hanxleden, “Slicing analysis
and indirect accesses to distributed arrays”, Workshop on
Languages and Compilers for Parallel Computing, 1993.
[7] R. Das, M. Uysal, J. Saltz, and Y. Hwang,
“Communication optimizations for irregular scientific
computations on distributed memory architectures”, Journal
of Parallel and Distributed Computing, 1993.
[8] J. Gosling, B. Joy, and G. Steele, “The Java language
specification”, 2000.
[9] R. v. Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J.
Saltz, “Compiler Analysis for Irregular Problems in Fortran
D”, Workshop on Languages and Compilers for Parallel
Computing, 1992.
[10] P. Hilfinger et al, “Titanium language reference
manual”, 2001.
[11] C. Koelbel, P. Mehrotra, and J. Van Rosendale,
“Supporting shared data structures on distributed memory
machines”, Symposium on Principles and Practice of
Parallel Programming, 1990.
[12] Matrix Market, http://math.nist.gov/MatrixMarket.
[13] G. Pike, and P. Hilfinger, “Reordering and Storage
Optimizations for Scientific Programs”, Supercomputing,
2002.

[14] S. Sharma, R. Ponnusamy, B. Moon, Y. Hwang, R. Das,
and J. Saltz, “Run-time and compile-time support for
adaptive irregular problems”, Supercomputing, 1994.
[15] M. Strout, L. Carter, and J. Ferrante, “Compile-time
composition of run-time data and iteration reorderings”,
Programming Language Design and Implementation, 2003.
[16] R. Tuminaro, M. Heroux, S. Hutchinson, and J. Shadid,
“Official Aztec user's guide: version 2.1”, 1999.
[17] S. Vadhiyar, G. Fagg, and J. Dongarra, “Performance
Modeling for Self Adapting Collective Communications for
MPI”, LACSI Symposium, 2001.
[18] J. Wu, J. Saltz, H. Berryman, and S. Hiranandani,
“Distributed memory compiler design for sparse problems”,
1991.
[19] UF Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices.
[20] D. Walker, “The Implementation of a Three-
Dimensional PIC Code on a Hypercube Concurrent
Processor”, Conference on Hypercubes, Concurrent
Computers, and Application, 1989.
[21] T. Wen, and P. Colella, “Adaptive Mesh Refinement in
Titanium”, IPDPS, 2005.
[22] S. Yau, “Experiences in Using Titanium for Simulation
of Immersed Boundary Biological Systems”, 2002.
[23] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B.
Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P.
Colella, and A. Aiken, “Titanium: A high-performance Java
dialect”, Workshop on Java for High-Performance Network
Computing, 1998.

Acknowledgement

 This work was supported in part by the
Department of Energy under DE-FC03-01ER25509,
by the National Science Foundation under ACI-
9619020, ACI-0090127, and CNS-0325873, by the
California State MICRO Program, by Sun
Microsystems, and by an NDSEG fellowship.
Experiments were performed on facilities provided by
Rice University, the National Energy Research
Scientific Computing Center, and the Pittsburgh
Supercomputing Center. Thanks go to the members of
the Titanium research group, who provided valuable
suggestions and feedbacks on this work. We would
also like to thank the anonymous reviewers for their
helpful comments on the original submission.

