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Abstract 
 

  The purpose of this paper is to analyze the use of the 
Titanium language, a high-performance Java dialect, and 
parallel programming practices on an application of the 
Immersed Boundary (IB) Method for simulating biologi-
cal processes.  We will compare two Titanium implemen-
tations of the IB Method in terms of performance, devel-
oper productivity, and use of Titanium features.  The first 
implementation makes use of Titanium’s scientific com-
puting and parallelization features.  The second uses 
Java features for data structures and Titanium for paral-
lelism.  We analyze the libraries using a contractile torus 
simulation as a sample application, a simple model of 
elastic fibers suspended in viscous, incompressible fluid.  
The implementation of the simple model precedes the 
realization of a more complex model of the mammalian 
heart, discussed in the final section of the paper.   
 

1. Overview of Titanium 

  The Titanium language extends Java and includes func-
tionality for scientific computing applications, such as a 
global address space, parallelization primitives, and 
multi-dimensional arrays.  An implementation of Tita-
nium was developed at Berkeley that is publicly avail-
able.  Titanium is optimized for scientific applications 
such as Multigrid [3] and particle simulations.  The cur-
rent driving application is a simulation of the mammalian 
heartbeat using the Immersed Boundary Method. 
  Berkeley’s implementation does not require special 
hardware support.  Programs written in Titanium can run 
on shared-memory and distributed memory architectures, 
as well as clusters of shared memory multiprocessors.  
The compiler translates Titanium into C with lightweight 
messaging layers.  Currently, the compiler runs on the 
Cray T3E using Shmem, the IBM SP using LAPI, the 
Compaq/Quadrics clusters using Shmem, and on the SGI 
Origin 2000 using POSIX threads.  In addition, an MPI 
implementation of the runtime system provides portability 
across essentially any cluster.   
  Titanium features can be grouped into two categories 
parallelization features and support for scientific comput-
ing.  Titanium’s support for parallelism includes a global 
address space, communication and synchronization primi-
tives, and local/global references.  Titanium’s support for 

scientific applications includes multi-dimensional arrays, 
immutable classes, memory management control, and 
compatibility with scientific computing libraries written 
in other languages.   
 

1.1 Parallelism 

  Titanium uses a Single Program Multiple Data (SPMD) 
model of computation, so each processor runs a copy of 
the same program.  Processes may work independently by 
branching on process-specific data, and there is no im-
plicit synchronization.  The Titanium compiler prevents 
deadlock on global synchronization primitives by ensur-
ing that all processes execute the same sequence of global 
synchronizations.   
  In addition, Titanium support for parallelism includes 
global synchronization, a global address space, and proc-
essor communication methods.  Global synchronization 
is done with the barrier method, which has the following 
properties:  a process will wait at the barrier until all other 
processes reach the barrier, and all processes execute the 
same sequence of barriers.  The compiler performs global 
synchronization analysis by examining single-valued 
variables, variables that have the same value on every 
process.  For example, conditional expressions with barri-
ers must be single-values, meaning that all processes will 
take the same branch.   
  Communication between processes occurs using the 
broadcast or exchange methods.  The broadcast method 
is a one-to-all communication, while the exchange 
method is an all-to-all communication.  Both methods 
have implied global synchronization or barrier of all 
processes. 
  Because of the global address space, following a refer-
ence can be quite expensive on some machines where it 
leads to a communication event.  The performance cost is 
significant on distributed-memory architectures, where 
local pointers are accessed faster and take less space than 
global pointers.  To make this cost visible to the pro-
grammer, without forcing explicit communication, the 
Titanium language offers two kinds of references:  global 
and local.  A remote reference may point to either local or 
remote data, while a local one points to probably local 
data.  All references are global by default, which simpli-
fies porting of threaded Java code to Titanium.   
 



1.2 Support for Scientific Applicatoins 

  Titanium arrays are true multi-dimensional arrays, 
independent of Java arrays.  They are indexed by points, 
which are grouped into index sets called domains.  Tita-
nium has a rich domain calculus for determining subdo-
mains, transposes, and intersections.  To loop over the 
elements of Titanium arrays, the iterator foreach is used.  
Titanium does not specify an order of iteration for the 
foreach loop allowing the compiler to reorder iterations 
for optimizations.  Distributed arrays are not handled ex-
plicitly but can be created using the exchange operation.  
Most applications have a specific data organization across 
processors; therefore one can create a distributed array 
structure tailored to their application.   
  Immutable classes were introduced into the language to 
increase performance of small objects.  Objects in Java 
are accessed through references, which add overhead that 
reduces performance especially when many small objects 
are used in a program.  Restrictions on immutable classes, 
such as final non-static fields and no inheritance, allow 
the compiler to pass them by value similar to C structs.  
Immutable classes can then effectively treated as Java 
primitive types and arrays of immutable objects can be 
stored contiguously in memory.   
 Memory management in Titanium is done using region-
based memory management.  Objects and data are allo-
cated in a private or shared region, and regions are freed 
with a region-delete operation.  Region-based memory 
management allows explicit programming for locality and 
performs better than garbage collection on distributed-
memory machines.   
  In addition, Titanium allows C code to be linked to Tita-
nium code using Titanium’s native C interface.  The na-
tive interface allows compatibility with scientific comput-
ing libraries.  Also in cases with non-uniform access to 
Titanium arrays, C kernels can be written and interfaced 
to Titanium. 
 

2. History of IB Implementations 

  The Immersed Boundary Method is a mathematical 
method for simulating the fluid dynamics of elastic mate-
rial immersed in viscous incompressible fluid.  The 
method was invented by Charles Peskin and Dave 
McQueen at the Courant Institute at NYU [1].  The 
method has been used in several simulations of biological 
processes including platelet clotting[7], cochlea function 
in the ear [4], and of particular interest the mammalian 
heart [2].  The original implementation of the IB method 
was written in Fortran 77 by Dave McQueen and is the 
code that several other implementations have been vali-
dated against.  Following this implementation, other 
simulation writers modified the code for their model sys-

tem.  Recently, there was an effort by Nat Cohen (NYU) 
to design a library for the IB method general enough for 
all IB simulations.  Cohen’s library was written in Fortran 
with shared memory vectorization and has been used to 
model a contractile torus and human heartbeat.  However, 
the Fortran implementation is limited to use on shared 
memory machines, such as the C90 and SGI Origin.  This 
limits the problem size and ability to parallelize over hun-
dreds of processes.   
  Titanium expands these limits because it can be used on 
distributed memory architectures using up to 300+ proc-
esses allowing a theoretically large problem size (10243+) 
and performance improvement.  The first version of the 
Titanium Immersed Boundary Method (Tigibs) library 
was written by Siu Man Yau.  Three simulations were 
written using his library:  the contractile torus, cochlea 
plates, and mammalian heart. [8]  He used much of Tita-
nium’s scientific computing support and parallelism.  
Subsequently, we added several optimizations to Tigibs 
that will be discussed in the Section 4. 
    The second version in Titanium was written by Ed 
Givelberg [4].  Givelberg’s use of the Immersed Bound-
ary Method was driven by simulation of cochlear function 
in the inner ear.  He ported his C version of the method to 
Titanium in the form of a general library.  Givelberg’s IB 
library handles more generic materials such as discs, 
which are necessary for cochlea simulation.   The IB li-
brary uses Java arrays and independently written domain 
calculus and uses Titanium for parallelism and native 
interfaces.  Currently the IB library is being optimized 
and the cochlea application is being written using the li-
brary.  We have implemented a contractile torus simula-
tion using the IB library, which we will use to analyze the 
library and compare with the same simulation written 
with the Tigibs library.  
   We will compare the two libraries – Tigibs and IB – in 
terms of readability, performance and scaling.  First, we 
give an overview of the immersed boundary method, then 
detail the differences between the two implementations, 
present a performance model of both implementations, 
next discuss the performance of the two versions, and 
finally we discuss the transition to a complete heart simu-
lation.   

3. Overview of IB Method 

    To demonstrate Titanium as used by a scientific appli-
cation, we use a model system, the contractile torus.  The 
torus consists of thousands of elastic fibers shaped into a 
torus structure that is covered by a grid of fluid.  An elas-
tic fiber behaves as a group of springs attached to each 
other to form a circle.  Each spring exerts force according 
to the law F = kx, where k is the spring constant and x is 
the displacement, on the spring preceding and following 
it.  The fiber also exerts force on the fluid, the NS equa-



tions are solved to find the fluid velocity, and then the 
fibers are moved according to the fluid velocity. 
   The number of timesteps varies with the problem, for 
example the heart simulation is performed in 57,000 
timesteps while the torus takes 512 timesteps.  Each 
timestep consists of four phases of the Immersed Bound-
ary Method: calculating the fiber force, spreading the 
force to the fluid, solving the Navier-Stokes (NS) equa-
tion for fluid velocity, and moving the fibers at the local 
fluid velocity.  At the commencement of the timestep, the 
fibers have been displaced and the process is repeated in 
the next timestep.  The phases are summarized here. 
 
   Fiber Force Calculation:  Each fiber is represented as 
a set of points linked together by the springs.  We calcu-
late a force for each point using an elastic spring law de-
scribed above.  The force will act to pull the point’s 
neighbors towards it or push its neighbors away.  
    Spread Force:  In this phase, each fiber point will up-
date the 4x4x4 grid of fluid cells surrounding it by adding 
the fluid force that it will exert on them.  The amount of 
force exerted on the fluid cell by a fiber point is calcu-
lated as a smoothed Dirac Delta function of the fiber 
force evaluated at the fluid cell.  The force that a fluid cell 
carries at the end is the sum of force exerted on it by 
nearby fiber points.      
    NS Solver:  In the NS Solver, we first calculate the 
right-hand side of the NS equation, using nearest-
neighbor updates on the fluid force grid.  Then we take an 
FFT of the left-hand side, and find the velocities in Fou-
rier space, followed by an inverse FFT to translate the 
velocity grid back to normal space in 3d. 
   Interpolate Velocity:  Finally, the fiber velocity is cal-
culated from its surrounding fluid velocity, the same 
4x4x4 grid of fluid points, as a sum of smoothed Dirac 
Delta functions of the fluid velocities evaluated at the 
fiber points.  The fiber points are moved into a new posi-
tion, based on their velocities.  

4. Comparison of Implementations 

    Both implementations use the same force calculation 
and fiber activation, but the implementations differ in 
how the calculations are performed.  We detail the differ-
ences between the implementations for each of the 
phases.  The discussion is presented in phases of the IB 
method and split into detail of the Tigibs library and then 
the IB library.   
 

4.1 Fiber Structure 

  Fibers are represented as space curves immersed in a 
rectangular fluid grid.  A fiber is a cyclic, ordered set of 
fiber points residing in 3-dimensional space within the 

domain of the fluid grid.  Each fiber point is connected to 
two other fiber points in the fiber set, and each connection 
is conceptually a spring.   
 
Tigibs:  The fiber is represented by a doubly-linked list 
of fiber points.  Each fiber point object consists of its po-
sition, its velocity, the force exerted on it by the two 
neighboring points, and pointers to its neighboring fiber 
points in the linked list structure. 
  Fibers often cross process regions depending on the 
choice of fiber partition.  To address the representation of 
fibers that cross boundaries, we introduced another data 
structure for storing portions of fibers that reside on a 
process, which we call a fiber fragment.  A fiber fragment 
object consists of a pointer to the first and last fiber point 
in that fragment, as well as pointers to the fragment’s 
immediate neighbors on different processes.  Each proc-
ess owns a Java Vector of its fiber fragments.   

 
Figure 1: Distributed fiber structure. 

 
  Figure 1 shows the distribution of fiber fragments in this 
library.  Fiber points owned by the same process are in 
the same color.  The partition shown is one where the 
fiber fragments are owned by the owner of the underlying 
fluid grid.  This partition allows us to take advantage of 
locality, decreasing communication in the interaction 
phases.  However, load balance is poor as the fibers are 
concentrated in the center of the fluid domain.  Also, the 
force calculation requires iteration over all points in a 
fiber.  A partition where fibers cross process boundaries 
increases communication in this phase.  One partitioning 
strategy takes into account locality and load balance, 
called egg slicer, which assigns fiber fragments to the 
corresponding fluid grid owner but balances the number 
of fiber points on each process.  Another partitioning 
strategy does not allow fibers to cut across processes, 
called spaghetti.   
  Figure 3 shows both partitioning strategies for the force 
calculation of the heart simulation.  The spaghetti parti-
tion performs better during the force calculation but badly 



for the interaction phases.  Egg slicer works best overall.  
The optimal partitioning strategy is easier to decide for 
the more regular fiber structure of the torus.  Cross-
sectional fibers should be kept intact, while longitudinal 
fibers should be cut for locality, called the pizza partition.   
 

 
Figure 2: IB fiber structure. 

 
 
IB:  Figure 2 shows the fiber structure for the IB library.   
The fluid is cut into slabs and assigned to processes, and 
the fibers are uncut when assigned to a process.  The dif-
ferent colors represent the ownership of each fiber.  In 
this figure, each fiber is assigned to a different process.  
Currently, locality is not taken into account, however the 
number of fiber points is approximately constant for all 
processes.  To improve performance and scalability, fi-
bers close to each other should be distributed together.   
The fibers points are maintained in an array rather than in 
a linked list.  Also, the library requires that the entire fiber 
be located on the same process, therefore no communica-
tion occurs in this phase.     
 

4.2 Force Calculation 

  Tigibs:  In the force calculation, each fiber point ac-
cesses its two neighbors, which requires communication 
between processes only when the fiber point is at the be-
ginning or end of a fiber fragment.  The communication 
can be reduced by introducing immutables classes to en-
capsulate the coordinates.  We use immutable classes to 
represent the position, velocity, and force data as a tuple 
of three doubles.  This representation allows one to re-
duce the number of global accesses by a factor of three.  
However, the use of immutable classes adds overhead 
when we want to change the immutable’s value.  We 
must initialize a new immutable object, copy the new 
values into the object, and replace the old immutable ob-

ject.  We would like to retain all the performance proper-
ties of immutables but allow variables to be updated.  
  Figure 3 demonstrates the performance increase with 
immutables for the heart simulation.  This optimization 
works solely when communication is involved but does 
not affect the spaghetti partition, where no communica-
tion occurs.  
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Figure 3: Optimizations on Tigibs. 

  Another optimization that we introduced is the explicit 
use of the local qualifier.  All references in Titanium are 
global by default, and the compiler automatically infers 
that some references are local, but local qualifier infer-
ence is not fail-proof.  To gain all benefit associated with 
local qualification, the programmer should explicitly de-
clare the variable as local.  In the torus, the linked list 
fiber representation includes local and global pointers.  
Neighboring fiber points that lie at process boundaries are 
left as global pointers, while internal fiber points are ex-
plicitly declared local.  The local qualifier reduces the 
access time and increases the application’s performance 
slightly.  Figure 3 also shows the performance increase 
for local qualification in this phase.   
 
      



Force Calculation

0
100
200
300
400
500
600
700
800
900

1000

2 4 8 16 32 64
Num procs

Ti
m

e 
(m

s)

theoretical 
actual

 
Figure 4: Performance model for force calcula-

tion. 

 
    IB: The IB library requires that the entire fiber be lo-
cated on the same process, therefore no communication 
occurs in this phase.  The amount of time spent in this 
phase depends entirely on how many fiber points are allo-
cated to each process.  The best partitioning strategy 
would be to equally distribute the fiber points.  
  To develop a performance model for this section, we 
assume that the number of fiber points on each process is 
equal.  First we look at the trend in computation cost for 
this phase in Figure 22.  The figure shows that this phase 
has approximately 100% parallel efficiency.  Since no 
communication occurs, computation is the dominating 
cost.  The computation includes floating point operations 
as well as memory operations.  The ratio of floating point 
operations to memory operations is approximately 0.45.  
Since the cost of memory operations is so high, we use 
the mflops rate to determine the performance model for 
this phase.  We used the following formula to model the 
running time in this phase: 
 
Time = (number of floating point operations per fiber 
point) x (number of fiber points) / (serial mflops rate) 
 
Figure 4 shows that the model is very close to the actual 
behavior in this phase.   

4.3 Spread Force 

  This phase consists of taking the force calculated at the 
fiber points and projecting the force to the fluid domain.  
The force is projected using a Dirac delta function that 
spreads the force from the fiber point to a 4x4x4 region of 
fluid surrounding the fiber point in a 3d distribution. 
 

 
Figure 5: Bounding boxes. 

 

4.3.1 Tigibs Spread Force 

Tigibs uses a bounding box algorithm to perform the delta 
function interaction.  This interaction phase consist of 
three subphases:  setting up the bounding boxes, doing 
the core of the computation, and communicating results to 
the appropriate process.  First each process determines its 
bounding box, the smallest fluid region that contains all 
of the points in its list.  The dimensions of the bounding 
box plus padding is used for the domain of the 3d work-
space, which will hold the force spread with the delta 
function after the native method call.  Figure 5 demon-
strates the bounding boxes for a simplified case.  The 
fluid is partitioned into slabs and the fluid owners are 
labeled with Pi.  The fiber colors denote the fiber’s 
owner.  The blue boxes covering all fiber points owned 
by a processor denotes the area that is the bounding box.  
This subphase is memory intensive and has few floating 
point operations.  It’s performance will be determined by 
cache behavior and memory performance.   
   The core of the interaction code is written in C for per-
formance.  The native code performs a for loop through 
all the points in the array.  Within the loop, the indices of 
the 4x4x4 fluid region corresponding to each point are 
calculated.  The delta functions weights are determined.  
The product of the weight and force is assigned to the 
portion of the workspace indexed.  The regions may over-
lap; therefore the force for the fluid point is the sum of all 
the force components corresponding to that fluid location.  
Figure 6 shows P0’s bounding box and demonstrates 
spreading force from points to the fluid bounding box.  
Note that the core of the interaction was written in C be-
cause random access to titanium arrays showed low per-
formance, however recent optimization to random access 
improves the performance but is still four times slower 
than the same code written in C.  This subphase is compu-
tationally intensive and consists mainly of floating point 



operations.  It is expected to scale well and its perform-
ance will be determined by the speed of floating point 
operations, somewhat by cache behavior, and load bal-
ance.   

 
Figure 6: Spreading force to fluid. 

   Each process owns a vertical slab of the fluid grid; 
therefore the forces on the grid need to be updated by 
adding the forces in the bounding boxes overlapping the 
vertical slab.  To accomplish this, each process gets 
pointers to the bounding boxes for all processes.  For 
each process, it copies the remote workspace from the 
destination process to a local buffer and adds the forces in 
the local copy to their vertical slab.   
  Also, note that communication occurs only in the last 
loop and it is all-to-all.  The amount of communication is 
determined by the size of each process’s bounding box 
and the amount of overlap with other processes’ fluid 
slabs.  The fiber points could be anywhere in the fluid 
domain, not only within that process’s fluid slab.  There-
fore, the bounding box could lie entirely within the proc-
ess’s fluid slab, overlap two or more processes’ fluid 
slabs, lie completely within another processes’ fluid slab, 
or cover the entire fluid domain.  The communication is 
determined by the spread of the points.  Since the fluid is 
partitioned into vertical slabs, vertical fibers located near 

each other will perform the best in this phase, while hori-
zontal fibers and fibers distant from each other will per-
form worst.  A good fiber partitioning strategy would be 
to group points that are near each other to minimize the 
size of the bounding boxes.  Also, an alternative method 
would be to not cut the vertical fibers for high perform-
ance in the force calculation, and cut the horizontal fibers 
across processes.   
 

4.3.2 IB Spread Force 

   The fluid domain is partitioned into slabs, similar to 
Tigibs, but it is partitioned further into cubes of size 
4x4x4 as shown in the grid in Figure 7.  The processes 
maintain a list of cubes that are being used.  The shaded 

 
Figure 7: Packing the force cubes. 

cubes in Figure 7 represent the cubes that correspond to 
the fiber indicated.  Each processor has a group of com-
plete fibers, which they have calculated the spring forces 
on that need to be spread to the fluid domain.  Every fiber 
point in the fiber distributes its force to the fluid force 
field. 
 
  The algorithm used to spread the force at each point has 
the following subphases:  spreading force, packing force 
cubes, sending mail, and updating force slabs.  Spreading 
the force consists of determining the delta function 
weights for each 4x4x4 region surrounding each fiber 
point, determining which cubes surround each point, and 
incrementing the force field by the product of the weight 
and the fiber point’s spring force.  Each process maintains 
a list of cubes the fiber points interact with, therefore no 
redundant cubes are saved.  This subphase is mostly com-
putationally intensive but has a large number of memory 
operations because of determining the cube lists.  To 
model this subphase’s performance, we use a similar 
equation as the force calculation: 
 



Time = (number of floating point operations per fiber 
point) x (number of fiber points) / (serial mflops rate) 
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Figure 8: Performance model for spread force. 

  
  The number of fiber points is proportional to the running 
time when the weights are computed, but the number of 
cubes are relevant for maintaining the cube list.  The 
number of cubes depends on the spread of the fiber points 
owned by each process.  We simplify the model by as-
suming that the number of cubes is also proportional to 
the number of fiber points, and we use number of fiber 
points as the metric for performance.  Increasing the 
number of processes helps to a certain extent, when the 
width of the fluid slabs are very narrow, causing most of 
the fluid to be communicated. 
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Figure 9: Performance model for pack-

ing/unpacking. 

  Packing force cubes consist of flattening the cubes into 
a one-dimensional Java array that can be communicated 
to other processes.  The one-dimensional array is referred 

to as a mailbox.  Packing is a memory intensive opera-
tion.  The number of cubes and the caching behavior de-
termines the memory cost.  To determine the number of 
cubes, we assume that the maximum number of cubes are 
used.  We assume that the memory operations hit in the 
L1 or L2 cache.  Figure 5 shows the model versus the 
actual number.  The model in this subphase is not very 
accurate because we estimate the number of cubes.  If we 
had a better estimate for the number of cubes, the model 
would fit the data better.  The equation used to determine 
running time in this subphase follows: 
 
Time = 3 x (number of cubes) x (size of cube) x (L2 
cache latency) 
    
   So far, no communication has occurred.  The blocks 
that overlap other processor’s fluid slabs must be sent to 
those processes and their force fields updated.  This 
communication is done using a Mailbox system.  First, 
the blocks are condensed into a Java array that is sent to 
the correct processor using the System.arrayCopy opera-
tion, an operation referred to as sending mail.  The cost 
of this subphase is determined by the network of the ma-
chine.  We could use an alpha-beta model, however this 
does not model the behavior well.  We believe that the 
barrier time is the limiting factor in this subphase, and we 
model the performance by doing a linear regression of 
sending mail time versus number of processes, Figure 10. 
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Figure 10: Linear regression for sending mail. 

   The communication in this phase is an all-to-all com-
munication.  The amount of data to be communicated 
depends on the number of blocks that overlap other proc-
essor’s fluid slabs.  Like the Tigibs interaction phase, the 



spread of the points determines the amount of communi-
cation.  Figure 11 shows the performance model for this 
subphase on an IBM SP.   
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Figure 11: Performance model for sending mail. 

  Updating force slabs consists of the owners of the fluid 
slabs updating its own fluid slab after it unpacks the mes-
sage sent from the overlapping process.  This phase con-
sists of memory operations as well as floating point op-
erations.  The parallel efficiency is low (Figure 22) and 
memory operations dominate, therefore we use a similar 
model to packing: 
 
Time = 3 x (number of cubes) x (size of cube) x (L2 
cache latency) 
 
This model would be more accurate if the floating point 
operations were taken into account. (Figure 9)   

4.4 NS Solver 

  In this phase, the NS equations are solved for the fluid 
velocity using the fluid force determined above.  This 
phase consist of transforming the knowns into fourier 
space by three forward FFTs, the equations are solved 
explicitly and then three inverse FFTs are done to trans-
form the unknowns (the velocities) back to normal space.   
 
Tigibs:  This library uses FFTW, a fast FFT implementa-
tion in C, to do the forward and inverse FFTs.  A Tita-
nium based FFT is also implemented for platforms that do 
not support FFTW.  The FFT is expected to perform well, 
with time complexity O (n log n).  The solving of the 
equations after the transformations is embarrassingly par-
allel and is expected to scale well.  There is also commu-
nication of the boundaries between the slabs before the 
equation solve.   
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Figure 12: Performance model for the ffts. 

 
IB:  This library uses FFTW explicitly for the FFT’s, 
however it is written to easily interface with other FFT 
libraries.  The number of floating point operations is ap-
proximately C x n log n, where C is a constant chosen to 
be 1.5.   The serial mflops for the FFT is 160 Mflops.  
The performance for the FFTs can be can be modeled 
using the following equation: 
 
Time = 6 x (C x n log n)  / (serial mflops) 
 
  After the FFTs, the boundaries of the slabs are commu-
nicated and the equations are solved explicitly.  The par-
allel efficiency is fairly high, so we model the perform-
ance as if it were embarrassingly parallel. 
 
Time = (number of floating point operations per fluid 
point) x (number of fluid points) / (serial mflops rate) 
 

Equation solve

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

2 4 8 16 32 64Num procs

Ti
m

e 
(m

s)

theoretical
actual

 
Figure 13: Performance model for the NS equa-



tion solve. 

 
The model would be more accurate if the communication 
was taken into account.   

4.5 Interpolate Velocity 

  After solving for the fluid velocity in the NS Solver, we 
need to interpolate the fluid velocity to the fiber point 
locations using the same Dirac delta function above.  We 
sample the velocity of the surrounding 4x4x4 region and 
sum the products of the delta function weights and fluid 
velocity.   
 

4.5.1 Tigibs Interpolate Velocity 

   The algorithm used is the opposite of spread force.  
First, we determine the bounding box, initialize a 3d array 
the size of the bounding box, and copy the fluid velocity 
into it.  This part requires communication as the bounding 
box will likely overlap with other processes.  The parti-
tioning of fibers is important here as well; the bounding 
box could cover the entire region if partitioned badly. 
(Figure 14) This is the only communication in this phase.  
It’s performance depends on the size of the bounding 
boxes.  A possible optimization is to retain the bounding 
box size from the spread force phase and reuse it here, 
reducing the set up time but not affecting the communica-
tion time.     
   The core of the interaction is again in a native C 
method.  The difference from the spread force phase is 
that the delta function weights are multiplied by the 
workspace velocities, and the sum of the products in the 
4x4x4 surrounding region is put into the point array.  
Again, this subphase is computationally intensive and 
depends on the number of points and the speed of floating 
point operations and random access to arrays.  Finally, 
using Titanium we copy the velocities from the point ar-
ray back to the fiber points. 

 
Figure 14: Interpolating velocity to fibers. 

    Note that the communication in this phase is similar to 
the spread force phase.  The larger the spread of the fiber 
points, the larger the size of the fluid to be communicated.  
The partitioning strategy optimized for this phase will be 
similar to spread force.  
 

4.5.2 IB Interpolate Velocity 

   The velocity solved during the NS Solver phase must be 
sampled and interpolated to each of the fiber points.  This 
phase consists of several steps:  packing the velocity 
cubes, sending mail, unpacking the velocity cubes, and 
moving the points.  The velocity is stored in the fluid 
slabs after the fluid solve.  The velocity is first copied 
from the slabs to the mailbox, referred to as packing the 
velocity cubes. The same communication descriptor is 
used as in the spread phase, and the data structure is re-
used here.  The cubes are copied from the fluid slabs and 
flattened into the mailbox structure described previously.  
The model of this subphase is similar to packing force 
cubes in spread force (Figure 9), although the running 
time is lower because the cubes are reused here: 
 



Time = 3 x (number of cubes) x (size of cube) x (L2 
cache latency) 
 
  The mailbox is then communicated to other processes, 
referred to as sending mail.  Again, we use a linear re-
gression of sending mail time versus number of proc-
esses. (Figure 11)   
  After the mail is sent, the processes unpack the cubes.  
Again, this is a memory intensive operation and we use 
the same model as the packing operation, Figure 9: 
 
Time = 3 x (number of cubes) x (size of cube) x (L2 
cache latency) 
 
  Finally, the delta weights are calculated for every point 
in the 4x4x4 region surrounding each fiber point, and the 
product of the weight and velocity are added to the fiber 
point’s position, called moving points.   According to 
Figure 22, the parallel efficiency is close to 100% be-
cause it is a computational phase.  We use the same 
model as the other computational phases (Figure 15): 
 
 Time = (number of floating point operations per fiber 
point) x (number of fiber points) / (serial mflops rate) 
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Figure 15: Performance model for moving 

points. 

 

4.6 Complete Performance Model  

  Putting all the subphases together gives us an accurate 
performance model of the behavior on two machines de-
scribed in the next section.  Figure 16 shows the perform-
ance model versus the actual data for the 2563 problem on 
Seaborg.  Figure 17 shows the same for the 1283 problem 
on Lion-XL.   
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Figure 16: Performance model versus actual on 
Seaborg. 
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Figure 17: Performance model versus actual on 

Lion-XL. 

5.  Performance 

   The torus simulation was run on an IBM SP (Seaborg) 
at NERSC and a Dell PC cluster (Lion-XL) at Pennsyl-
vania State University.  The specifications for both ma-
chines are given in the diagram below: 
 

Machine Seaborg Lion-XL 

Type IBM SP  Dell PC 
Number of CPUs per Node 16 2 
Number of Nodes 416 176 



CPU Clock speed 365 MHz 2.4 GHz 
CPU FP results/clock 4  
CPU Peak Performance 1.5 Gflops  
Communication Latency 60 micro-  
Communication BW 160 MB/s  
Network MPI Quadrics 

Table 1: Machine specifications. 

 
   The IBM SP is a distributed-memory machine and a 
latency bound machine.  We expect bulk communication 
to perform well but smaller messages to perform badly.  
The Quadrics network on the PC cluster performs well on 
small messages.    

5.1 Overall Performance 

  We compare the performance of several fluid grid sizes 
for both implementations.  Figure 18 shows that IB out-
performs Tigibs for every grid size, and the difference is 
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Figure 18: Total running time vs. Number of 

processors on Seaborg. 

greatly pronounced in the largest problem size (2563 fluid 
grid).  As the number of processes increases, the running 
time of Tigibs decreases for problem sizes of 643 and 
1283 up to a point of diminishing returns, after which 
inter-node communication is too large to benefit from 
parallelization.  This trend may be visible for 2563 if we 
could run the problem on a larger number of processes.  
Although IB shows a small decrease in performance due 
to inter-node communication, running time monotonically 

decreases when the number of processes increases, 
thereby scaling better than Tigibs. 
    
  Comparing the performance on both machines for the 
1283 problem, Figure 9, shows that both implementations 
scale better on the PC cluster, possibly because of the 
faster Quadrics network.  

Figure 19:  Running Time on the the PC cluster 

5.2 Identifying Bottlenecks 

   Since IB clearly outperforms Tigibs, we focus our dis-
cussion on optimizations associated with the IB library.   
The first step in tuning the performance is identifying 
bottlenecks.  To this extent, we look at the percentage of 
time in each phase of the algorithm and determine which 
optimizations will cause the greatest speedup.   
    Figure 20 shows the percentage of time spent in each 
phase for three different grid sizes.  The smaller grid sizes 
(643 and 1283) have similar bottlenecks, however the larg-
est grid size (2563) shows that the NS Solver is the major 
bottleneck with 44% of time.  The bottleneck in the 
smallest grid size is the computation of the delta function 
(in spread force and move points-40%) followed by the 
communication (both send mails-28%).  In the middle 
grid size the bottleneck is the communication  (both send 
mails-39%) followed by the NS solver (21%).  While the 
largest grid size’s slowest phase is the NS solver (44%) 
followed by packing force cubes (23%).   
   Optimizing the delta function calculations by 50% will 
decrease the running time of the 643 problem by 20%, the 
1283 problem by 12%, and the 2563 problem by 11%.  
While tuning the NS solver causes the greatest gain in 
performance of 9%, 11%, and 22% respectively for each 
grid size.  Reducing the communication by 50% will al-
low each timestep to be run in 14%ms, 19%ms, 3%ms.    
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Figure 20: Percentage of time spent in phases. 

    Comparing the distribution of time in the phases for 
both machines shows that the communication time is less 
of a bottleneck and the NS solver becomes more impor-
tant.  Optimization of this phase will increase perform-
ance the most on the Quadrics machine.   
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Figure 21:  Percentage of time spent in phases 
on both machines. 
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Figure 22: Computation cost in parallel effi-

ciency. 
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Figure 23: Performance model of 10243 torus. 

   



5.3 Extending the Performance Model. 

  We have extended the performance model described in 
section 4 to predict the performance of a 10243 torus on 
both machines.  Figure 23 shows a plot of the theoretical 
performance of the 10243 problem.  On Seaborg, one 
timestep takes 83 seconds on 512 processors.  On Lion, 
the same problem takes 33.6 seconds.   
 

 
6. Future Work – Toward a Heart Simula-
tion 

   The model torus sets the stage for simulation of the 
mammalian heartbeat.  Heart simulation requires the fiber 
structure defined above and the immersed boundary 
method libraries described.  In addition, the heart fiber 
activation varies from activation of torus fibers.  Blood 
vessels, which act as sources and sinks, of fluid into and 
out of the heart also need to be added.   
    Heart fibers are activated according to the muscle layer 
the fiber belongs to and the timestep the simulation is in.  
The heart consists of twelve muscle layers that can be 
grouped into classes:  atrial layer, ventricular layer, papil-
lary layer, etc.  The atrial layer is activated during systole 
(the first half of the simulation), the ventricular layer is 
activated during diastole (the second half of the simula-
tion), and the papillary layer is activated at different times 
during the simulation.  Fiber activation consists of de-
creasing the resting length and increasing the stiffness of 
the fiber, thereby causing contraction of that muscle layer.      
  The size of the heart differs from the torus.  The current 
heart has a hard-coded grid size of 1283 and approxi-
mately 6 M fiber points.  However, higher resolutions 
will ultimately be needed to make new physiological dis-
coveries from the simulation.     
   Sources and sinks are modeled as 4x4x4 regions in the 
heart that are connected by a pipe to an imaginary reser-
voir of fluid.  For sources, the reservoirs push fluid into 
the region, and for sinks the reservoirs pull fluid from the 
region.  A modified Ohm’s law determines the volume 
flow rate into or out of the heart:  
 
(pressure at source – pressure at reservoir)/ (resistance 
of the pipe) 
 
   The pressure at the reservoirs is the blood pressures of 
the cardiac vessels (the superior and inferior vena cavas, 
aorta, and pulmonary artery and vein).  The resistance of 
the pipe is a parameter that the user can vary.  Each 
source is surrounded by a ring of markers (points in space 
that move with the fluid but exert no force) that determine 
the location of the source.     
  The method of source simulation is detailed here.  First, 
one must determine the average location of each group of 

markers.  Then, sample the pressure, which is initially 
zero, of the 4x4x4 region surrounding the source point.  
The pressure is then used to determine the volume flow 
rate using the modified Ohm’s law above.  The diver-
gence of the velocity, which is the average volume flow 
rate, is kept in a three-dimensional array the size of the 
fluid grid.  The divergence array is zero everywhere ex-
cept the regions where the sources lay and the overflow 
drain.  The overflow drain, located in the first two planes 
at the edge of the fluid grid, is needed to maintain conser-
vation of fluid flow in/out of the heart.  The NS solver 
needs to be modified to include the divergence term, 
which adds two FFTs to the current implementation, a 
forward FFT for the divergence and an inverse FFT for 
the pressure.  After the new velocities and pressure have 
been solved, we move the markers and begin the next 
iteration with finding the new location of the sources.   
  Currently, the heart simulation using the Tigibs library is 
in need of a numerically correct version of the sources 
and sinks in order to have a functional simulation.  
Sources and sinks have been added to the heart simulation 
but have a numerical bug.  In addition, the heart simula-
tion needs to be written using the IB library.   
 

7. Conclusions 

   We have presented two implementations of the torus 
simulation, compared the simulations in terms of algo-
rithmic organization, investigated the performance in de-
tail, and developed a performance model.  The perform-
ance model can be extended to the driving application, 
the heart.  A heart with fluid grid resolution 1024 running 
for approximately 60,000 timesteps will take 22 days to 
complete.  In order for this simulation to be feasible, per-
formance will need to be increased by improving the dis-
tribution of the fibers as well as increasing the perform-
ance of the NS solver.   
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