
Reordering and Storage Optimizations for Scientific
Programs

by

Geoffrey Roeder Pike

B.A. (Harvard University) 1992

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Paul N. Hilfinger, Chair
Professor Katherine Yelick

Professor Lior Pachter

Spring 2002

The dissertation of Geoffrey Roeder Pike is approved:

Chair Date

Date

Date

University of California, Berkeley

Spring 2002

Reordering and Storage Optimizations for Scientific
Programs

Copyright c© 2002

by

Geoffrey Roeder Pike

Abstract

Reordering and Storage Optimizations for Scientific

Programs

by

Geoffrey Roeder Pike

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Paul N. Hilfinger, Chair

We present the design and implementation of compiler optimizations that

choreograph the use of data in scientific programs. Scientific programs often in-

clude multiple loops over the same data, where completing each loop before starting

the next discards opportunities for fine-grained data reuse. Interleaving parts of

different loops may greatly improve performance. Our approach combines reorder-

ing optimizations such as loop fusion and tiling with storage optimizations such as

eliminating or reducing the size of temporary arrays.

The programmers we have in mind are willing to spend some time tuning their

code and their compiler parameters. Given that, and the difficulty in statically

selecting parameters such as tile sizes, it makes sense to provide automatic parame-

ter searching alongside the compiler. Furthermore, including automatic parameter

searching logically leads one to include more aggressive and speculative optimizing

transformations in the compiler. Our strategy is to optimize aggressively but to

expose the compiler’s decisions to external control. Since we expect to generate

numerous executables during the tuning process, optimizations that may pay off

1

are relatively more important.

Our implementation is in a library invoked from tc, a compiler for the Titanium

language. We give an overview of Titanium and tc, describe our reordering and

storage optimizations, and present experimental results with and without param-

eter search. We double or triple the performance of Gauss-Seidel relaxation and

multigrid, and we argue that ours is the best compiler for that kind of program.

Chair Date

2

For Marianne

iii

Acknowledgements

First and foremost, thanks to friends and family. I enjoyed the great times and

weathered the bad with my friends Marianne, Jeff, Bill, Webby, Laura, Todd, Jim,

Franco, David, Jonah, Dave, Kim, Kirsten, Sarah, and Brandy. Professionally,

Paul Hilfinger has been my mentor. I thank him and the rest of the Titanium

group: Kathy Yelick, Sue Graham, Phil Colella, Alex Aiken, Luigi Semenzato,

Andrew Begel, Dan Bonachea, David Gay, Arvind Krishnamurthy, Ben Liblit,

C. J. Lin, Carleton Miyamoto, Simon Yau, Greg Balls, and Peter McQuorquo-

dale. Thanks also to Rich Vuduc, Josh MacDonald, Jim Demmel, Lior Pachter,

David Culler, Ed Wang, Kinson Ho, Doug Hauge, Allen Downey, Adrian Perrig,

Monica Chew, Raph Levien, Kathryn Crabtree, Peggy Lau, and Mary Byrnes.

Finally, thanks to John Heimbaugh and the rest of the local ultimate players—a

fun, spirited group.

This work was supported in part by the Advanced Research Projects Agency of

the Department of Defense under contract F30602-95-C-0136, the National Science

Foundation under grants ACI-9619020 and EIA-9802069,and the Department of

Energy under contracts W-7405-ENG-48 and DE-AC03-765F00098. The informa-

tion presented here does not necessarily reflect the position or the policy of the

Government and no official endorsement should be inferred.

iv

Contents

Acknowledgements iv

1 Introduction 1

1.1 Motivation and Goals . 1

1.2 Languages . 2

1.3 Concepts and Notation for Tiling 3

1.4 A Natural Heuristic for Interleaving Execution of Loops 7

1.5 Storage Optimizations . 8

1.6 Searching the Space of Parameters 9

1.7 Code Bloat . 10

1.8 Contributions . 10

1.9 Outline . 11

2 Related Work 13

2.1 Introduction . 13

2.2 Optimization by Hand . 13

2.3 Compilers’ Tiling and Storage Optimizations 14

2.4 Parameter Searching . 16

3 Background on Titanium 18

v

3.1 Introduction . 18

3.2 Overview of tc . 19

3.3 Analysis of Loops . 21

3.3.1 MIVE and Loop Invariant Expressions 22

3.4 Loop Optimizations . 27

3.4.1 Lifting Loop Invariants . 28

3.4.2 Strength Reduction . 31

3.4.3 Offset Strength Reduction (OSR) 34

3.4.4 Unit Stride Inference . 37

3.4.5 Lifting Bounds Checks . 38

3.5 Useless Assignment Elimination . 42

4 On Reordering Loops 44

4.1 Introduction . 44

4.1.1 Purpose . 44

4.1.2 Terminology . 45

4.1.3 Outline . 46

4.2 Dividing R
N into an ordered set of parallelepipeds 47

4.3 Selecting a Tiling of One Loop . 48

4.4 Inducing a Tiling . 51

4.4.1 Correctness . 60

4.4.2 Variations . 60

5 Implementation Details 66

5.1 Titanium/Stoptifu Interface . 66

5.2 Selecting Loops to Tile Together . 67

5.3 Disjoint Pairs of Arrays . 68

vi

5.4 Generating Code for Tilings . 69

6 Storage Optimizations 72

6.1 Introduction . 72

6.2 Contracting Arrays . 73

6.2.1 Motivation . 73

6.2.2 Algorithm and Implementation 77

6.3 Delaying Writes . 82

6.4 Eliding Array Reads . 84

6.4.1 Motivation . 84

6.4.2 Implementation . 85

6.4.3 Register Pressure . 85

6.5 Conclusion . 88

7 Parameter Selection 89

8 Results 94

8.1 Introduction . 94

8.2 1D Benchmarks . 95

8.3 Gauss-Seidel Relaxation in 2D . 97

8.4 Multigrid . 100

8.5 Discussion . 101

9 Parallel Execution 103

9.1 Introduction . 103

9.2 Implementation . 103

9.3 Results . 106

vii

10 Conclusion 109

10.1 Future Work . 109

10.2 Highlights . 109

Bibliography 111

viii

List of Tables

7.1 Rules for Perturbing Parameters . 91

8.1 Results for s3 . 96

8.2 Results for ca . 97

8.3 Results for rb9 . 98

8.4 Results for rbrb9 . 99

8.5 Results for mg . 101

9.1 Parallel Results . 107

ix

List of Figures

1.1 Tiling a loop with a 2x2 square tile 4

1.2 Tiling a loop with an odd-shaped tile. 6

1.3 Sample data parallel code . 7

3.1 Sample MIVEs . 23

3.2 Algorithm for MIVE and loop invariant analysis 25

3.3 Sample MIVE calculation . 26

3.4 Pseudocode for invariant code motion 29

3.5 Generic strength reduction for a 3D rectangular iteration 32

3.6 Strength reduction on a partial domain loop 33

3.7 OSR . 35

3.8 Pseudocode for Unit Stride Inference 37

3.9 Pseudocode for generating minimum and maximum array bounds . 40

3.10 findMin() . 41

3.11 A program fragment that can benefit from useless assignment elim-

ination . 43

3.12 Pseudocode for finding useless assignments 43

4.1 Pseudocode for pick planes() . 49

4.2 Code for running example: a 2D stencil 51

x

4.3 Tilings for running example . 52

4.4 Diagram of two loops tiled together. 53

4.5 Additional example . 54

4.6 Pseudocode for merge() . 55

4.7 Pseudocode for induce tile0() . 56

4.8 Pseudocode for calculate derivs() 57

4.9 Pseudocode for verify() . 59

4.10 Selecting plausible placements of a reshaped tile 62

4.11 Pseudocode for reshaping tiles . 63

4.12 Tiling with reshaped induced tile 64

5.1 Outline of C code output . 67

5.2 Executing tiles in order . 70

5.3 Executing a general-case tile . 70

6.1 Example amenable to array contraction 73

6.2 Two loops tiled together with array contraction 74

6.3 Pseudocode for array contraction 76

6.4 Variant of example amenable to array contraction 78

6.5 Array contraction to multiple scalars per write site 79

6.6 Array contraction with bigger tile 81

6.7 Matrix multiply . 82

6.8 Example with delayed writes . 83

6.9 Analysis to avoid array reloads . 84

6.10 Throttling register pressure . 86

6.11 Throttling register pressure, part 2 87

7.1 Simulated annealing for parameter selection 90

xi

8.1 Pseudocode for ca . 95

9.1 Analysis for automatic parallelization 105

xii

Chapter 1

Introduction

1.1 Motivation and Goals

Taking advantage of the hardware’s features is a common goal for performance pro-

grammers. Impressive performance gains can arise from clever use of, for example,

caches, vector instructions, or sticky flags to detect floating point errors. One of the

goals of modern compiler technology is to thrive on ever more complex hardware

without sacrificing code’s readability, portability, or high-level abstractions.

We reviewed a number of some scientific programs several years ago to see what

optimizations, known or unknown, would have the most impact. Unnecessary cache

misses were the single largest missed opportunity. Rewriting and restructing the

important loops by hand increased the performance of these programs by a factor

of two or more. Multigrid [8], in particular, was an important scientific application

that we found could greatly benefit from memory-hierarchy optimizations. Other

hand-optimization work also suggested that compilers were doing a mediocre job

on sequential multigrid (Douglas et al. [11]; Sellappa and Chatterjee [33]).

The main purpose of this document is to explain how state-of-the-art techniques

1

in those hand-optimization experiments were automated. The resulting system is

innovative for its ability to tile and fuse loops in a natural and non-restrictive way.

When multiple loops are tiled and fused together, the opportunities for data reuse

can be great. However, the number of possible reorderings is usually unbounded.

We therefore propose some heuristics and report how they compare to each other

and to previous approaches.

We rearrange code without replicating operations or performing algebraic trans-

formations, so the optimized code and the non-optimized code perform the same

operations on the same operands. The only exception is on hardware where stor-

ing a floating-point number to memory and reading it back can result in a loss of

precision: in that case, we lose precision less often.

We favor trial-and-error techniques for selecting tile shapes and other param-

eters. We argue that to be most useful, the system must include a mechanism

for choosing parameters outside the compiler itself. Projects such as PHiPAC [7],

ATLAS [36], and BeBOP [6] have demonstrated that trying many different com-

binations of parameters often leads to a “sweet spot” in performance that never

would have been predicted analytically. We describe a parameter search mecha-

nism we have developed based on simulated annealing.

1.2 Languages

The primary computer languages of interest in this dissertation are Titanium,

our source language, and a C++-like pseudocode we use to describe compiler

algorithms. A self-contained (but incomplete) description of Titanium appears

in Chapter 3. Hilfinger et al. [14] is the reference manual for Titanium. The

main ideas of this dissertation are applicable to any language commonly used for

2

scientific programming. The bulk of the work described below is encoded in a

library that could be attached to compilers for other languages.

Pseudocode generally uses typewriter font but deviates from that for some

variables (such as N) whose value corresponds to one that is discussed in the text.

We will occasionally omit the type of a variable if it is obvious from context. A

few special notations in pseudocode will be introduced later as needed.

1.3 Concepts and Notation for Tiling

Loop reordering is a potent but complex tool. Compilers reorder loops primarily to

improve temporal locality of data accesses. (Vectorizing and parallelizing compilers

may reorder loops for other reasons.) Typically memory accesses, cache accesses,

cache misses, and number of machine instructions executed all decrease. However,

register pressure and code size typically increase. Loop tiling is a well-studied

reordering optimization that subsumes most other practical reordering optimiza-

tions.

We restrict our discussion to loops of the form foreach (p in D) S, where

the iteration space, D, is an arbitrary subset of Z
N ; S is any statement; and N is

a compile-time constant. This is the primary form of iteration in Titanium. The

semantics of foreach specify that the body, S, be executed |D| times with p bound

to each element of D in turn. However, the order in which p iterates through D is

unspecified.

Let a tile space T with tile size K be the cross product of Z
N and the set

{0, . . . , K − 1}. The kth step of the tile at x is the point 〈x, k〉 ∈ T , where x ∈ Z
N

and 0 ≤ k < K. The tile at 0 means the tile at [0, . . . , 0]. We specify a loop

reordering by a total order on T and a bijection, C: T ↔ Z
N . For q and q′ in tile

3

0

1

2

3

tile at 0
(a) (b)

Figure 1.1: Two views of a tiling with a 2x2 square tile. The tile at 0 is highlighted
throughout. (a) Top: square tiles in the iteration space. (Individual iterations not
shown.) Bottom: T = Z

2 × {0, 1, 2, 3} is shown with a star indicating each tile. The
correspondence between the two spaces is roughly indicated. In both spaces, the area
between the heavy gray lines is one stack of tiles. (b) A more detailed view that shows
individual steps. Top, the iteration space of the loop is shown with each loop iter-
ation drawn as a small dot. For simplicity, below we only show the tile at 0 (i.e.,
〈[0, 0], 0〉 . . . 〈[0, 0], 3〉). Part of the correspondence, C, between the top and bottom is
indicated. (Tile stack not shown.)

space and C(q) and C(q′) in the loop’s iteration space, q ≺ q′ iff C(q) ≺ C(q′).

A tile is a set of points 〈x, 0〉, . . . , 〈x, K − 1〉 in T or the corresponding set in the

loop’s iteration space, C(〈x, 0〉), . . . , C(〈x, K − 1〉). The tile at x and the tile at x′

are in the same stack of tiles iff the first N − 1 coordinates of x and x′ are equal.

4

As an example, consider tiling a 2-dimensional space with 2 × 2 square tiles.

One could use C(〈x, 0〉) = 2x, C(〈x, 1〉) = 2x + [0, 1], C(〈x, 2〉) = 2x + [1, 0], and

C(〈x, 3〉) = 2x + [1, 1]. (We use the notation [u1, . . . , uN] for a vector u ∈ Z
N .)

This is illustrated in figure 1.1.

Our implementation always uses lexicographic order on T . In lexicographic

order, p ≺ q if p1 < q1 or if N > 1 and p1 = q1 and [p2, . . . , pN] lexicographically

precedes [q2, . . . , qN]. Lexicographic order on Z
N × S for some S ⊆ Z is analogous

to lexicographic order on Z
N+1.

In this model, no constraints are placed on the bijection C, but our implemen-

tation only can generate a subset of all the possible bijections. The details are

explored in Chapter 4. Among the reorderings we generate are the standard ones

for loop interchange, unrolling, reversal, and so on.

Observation 1.3.1 For C: T ↔ Z
N , any step 0 ≤ α < K, and a vector ξ ∈ Z

N ,

one may define another bijection

Γ(〈x, k〉) =

{
C(〈x + ξ, k〉) if k = α

C(〈x, k〉) otherwise

to generate another (possibly identical) way to tile Z
N . For example, if C(〈x, 0〉) =

2x, C(〈x, 1〉) = 2x+[0, 1], C(〈x, 2〉) = 2x+[1, 0], C(〈x, 3〉) = 2x+[1, 1], α = 0, and

ξ = [1, 1], we get Γ(〈x, 0〉) = 2x+[2, 2], Γ(〈x, 1〉) = 2x+[0, 1], Γ(〈x, 2〉) = 2x+[1, 0],

and Γ(〈x, 3〉) = 2x + [1, 1]. (See figure 1.2.) All the tilings we use have tiles that

are parallelepipeds or can be related to such a tiling by one or more applications of

this observation.

5

0

1

2

3

tile at 0

Figure 1.2: As in the previous figure, the top shows a portion of an iteration space
with tiles outlined. The tile at 0 is highlighted. Below is T = Z

2 ×{0, 1, 2, 3}, with only
the tile at 0 shown. Part of the correspondence between the two spaces is indicated.

6

L0: foreach (p in D)

B[p] = (A[p - [1]] + A[p] + A[p + [1]]) / 3.0;

L1: foreach (q in D)

A[q] = B[q];

Figure 1.3: Sample data parallel code

1.4 A Natural Heuristic for Interleaving Execu-

tion of Loops

Tiling and interleaving the execution of multiple loops can have benefits similar

to the benefits of tiling a single loop. In particular, loops may share data whose

temporal locality can be improved by merging the loops.

The definitions in the previous section may be extended to the multiple-loop

case. Let the loops be L0, . . . , Ln−1, each with an N -dimensional iteration space.

Define T as before. Let l(k) = i if the kth step belongs to loop Li. Define Ci as a

bijection from {〈x, k〉 | l(k) = i} to the iteration space of Li. Define C as

C(〈x, k〉) =







C0(〈x, k〉) if l(k) = 0

C1(〈x, k〉) if l(k) = 1

...
...

.

Consider optimizing the 1-dimensional example in figure 1.3. An obvious re-

ordering would be to execute each iteration of the second loop shortly after the

corresponding iteration of the first loop. For example, for some value z, one could

use:

T = Z × {0, 1}

l(0) = 0

l(1) = 1

7

C0(〈x, 0〉) = x

C1(〈x, 1〉) = x − z

order on T = lexicographic .

Selecting z = 0 would not work as then we would be overwriting the value for

A[x] in step 〈x, 1〉 (second loop, q = x) that is needed by step 〈x + 1, 0〉 (first

loop, p = x + 1). But any z > 0 is legal. Of those possibilities, the best is almost

certainly z = 1; values are then reused in quick succession. Thus, each value

produced by the first loop can be consumed by the second loop without being

stored in memory at all.

The heuristic is that one should interleave loops as tightly as possible (if one is

going to interleave them at all). We feel this is a very natural heuristic to use in

selecting a tiling of multiple loops. We show that following the heuristic is often

profitable even if it dictates creating tiles that are not parallelepipeds.

1.5 Storage Optimizations

By storage optimizations we simply mean optimizations that change where data

is stored. Storage optimizations include basic data reuse optimizations (e.g., do

not load from memory what is already in a register) as well as more complex

machinations (e.g., rearrange the layout of an array). The storage optimizations

we have implemented include a few of the former and one of the latter, namely,

array contraction. All of the storage optimizations that we have implemented could

be called memory-hierarchy optimizations.

There is no inventiveness in thinking that one should not load from memory

what is already in a register. However, our version of array contraction is better

8

than any previously available, because it allows arrays to be contracted piecewise

to any combination of scalar variables and lower dimensional arrays.

Finally, as a practical matter, without storage optimizations, it would be dif-

ficult even to approach top performance. The comparison of alternative tilings is

less meaningful if the low-level implementations of the register tiles are flawed.

1.6 Searching the Space of Parameters

Selecting optimal tile shapes and sizes is too hard for a compiler. The best perfor-

mance seldom can be achieved in a fixed amount of programming time or compile

time, especially now that even low-end CPUs have multiple floating point pipelines,

at least two levels of cache, out-of-order execution, and more.

Our system does not necessarily guess parameters well, but instead provides a

large number of knobs that override its guesses. The system allows an input pa-

rameter file alongside the source files. A question answered by the parameter file

might be “How large should be the tiles for the loop at line 27?” Correct seman-

tics of the generated code are guaranteed regardless of the parameters specified.

The output of the compiler also includes an output parameter file indicating what

questions it needed answered during compilation and what answers it used. Often

a question it needs answered is not addressed in the input parameter file, in which

case a default value is selected. If a question answered in the input parameter

file is not relevant to the compilation then it is ignored. In our pseudocode, the

notation

get parameterd "How much?"

is used to indicate that the input parameter file is consulted for the answer to the

question. The default is d.

9

Our method for achieving high performance is to test a variety of different pa-

rameter settings. The best way to take advantage of the multitude of knobs on our

compiler is unclear. We describe our first attempt, a parameter-searching system

based on simulated annealing. The longer a search one is willing to undertake the

better the answer that will emerge (on average). One can easily imagine other

methods of exploring the parameter space.

1.7 Code Bloat

The best-performing scientific programs are not succinct. The best 10,000-line

program to multiply matrices will perform better than the best 100-line program

to multiply matrices. However, a compiler might transform a succinct program into

one approaching optimal performance if it can perform the right optimizations.

Our goal in this work to produce fast sequential programs without regard to

the size of the generated code. If code bloat is a concern, there are two mitigat-

ing factors. First, the full set of optimizations we propose is typically applicable

to a small subset of the code in a program. Therefore, some small sections may

grow tremendously in size, but the whole program usually will not. Second, our

parameter-searching mechanism incorporates a user-defined fitness criterion. The

amount of time to perform some calculation is the usual criterion, but other con-

siderations such as code size can easily be included.

1.8 Contributions

The contributions of this dissertation include:

• Better array contraction than has been done previously in a compiler—on

par with the best hand-optimization techniques.

10

• A flexible tiling and fusion algorithm that can generate tiles in a variety

of shapes and sizes.

• A small step towards a system that can equal PHiPAC or ATLAS for any

source program.

• Results of searching the parameter space for multigrid and related codes.

• An elegant algorithm to simultaneously determine loop-invariant expres-

sions and, when possible, polynomials equal to certain expressions inside

a loop. The resulting information drives a number of transformations.

1.9 Outline

In this introduction we have presented a simple formalism for specifying the tiling

and interleaving of any number of loops. It can express all the standard loop

reordering optimizations, such as loop fusion, loop interchange, unrolling, reversal,

and others.

We take an aggressive approach because we know that these optimizations,

when successful, can be tremendously beneficial to performance. We are therefore

quick to add transformations when favorable conditions may exist at runtime. We

do not require complete evidence of safety at compile time if an inexpensive runtime

check can enforce safety. We do not worry about array bounds or loop bounds at

compile time when we can speculatively compile for some favorable situation and

easily test for it at runtime. We do not worry about code bloat.

Clearly, such aggressiveness would be cavalier without the fine control afforded

by the input parameter file. We cater to users who are sensitive to performance

and willing to tune parameters. Since we expect users to tune the parameters,

11

we are free to include transformations that traditional compilers disdain; even a

transformation that usually is a pessimization might be worth including if it has

an occasional spectacular success. Missteps are less costly when they will likely

be undone by moving elsewhere in the parameter space. In short, it is better

to optimize aggressively (but under the user’s control) than to refuse lucrative

transformations because some crucial information is not available statically.

Here ends the introduction. Chapter 2 discusses related work. Chapter 3 pro-

vides basic information on Titanium and tc, a compiler for Titanium. A library

attached to the Titanium compiler performs the necessary analysis and transfor-

mations for our vision of loop reordering and storage optimizations. The library

is called “Stoptifu,” coined from the first few letters of words in “storage opti-

mizations, tiling, and fusion.” Chapters 4, 5, and 6 elaborate on the design and

implementation of Stoptifu. Chapter 7 discusses our parameter-searching system.

Sequential results are presented in Chapter 8, and a proof-of-concept extension to

automatic parallelization is presented in Chapter 9. Finally, Chapter 10 concludes.

12

Chapter 2

Related Work

2.1 Introduction

This chapter puts our work in perspective amongst the many research projects

related to tiling. The best optimizations currently known for multigrid are sug-

gested by studies that rewrite the code manually (Douglas et al. [11]; Sellappa and

Chatterjee [33]). Our work does the best job of performing the necessary analyses

and transformations in a compiler. We therefore claim that our compiler is the

best currently available for sequential multigrid. (Of course, we also can optimize

other programs.)

The rest of the chapter explores related manual optimization studies, compiler

technology, and parameter searching programs.

2.2 Optimization by Hand

No other compiler offers the right optimizations for stencil codes such as multigrid.

We show this by comparing our full compiler with hamstrung versions, some of

which correspond to competing approaches (§8). Our aggressive approach to loop

13

fusion and array contraction offers a clear advantage over previous systems. Studies

of manually rewritten source programs, however, have demonstrated optimizations

that are quite similar to what we have done in Stoptifu.

Hierarchical Tiling: A Methodology for High Performance by Carter et al. [10]

is a seminal work. They emphasize careful construction of tiles for register reuse,

the notion that data dependences through the surface of a tile have different storage

requirements than dependences within a tile, the use of non-rectangular tiles, and,

of course, hierarchical tiling. Although we have not implemented hierarchical tiling

(yet), we have tried to use many other ideas from their work.

Manual optimization of sequential multigrid and related codes is primarily fo-

cused on moving each datum from or to memory as infrequently as possible (Dou-

glas et al. [11]; Sellappa and Chatterjee [33]). Most intermediate results are written

once and read once, and in näıve code those data go all the way to main memory

and back. Multiple passes of, for example, Gauss-Seidel relaxation, can be merged

together, which allows the majority of the intermediate results never to leave the

CPU. A write to memory followed much later by a read from memory becomes a

write to and read from a register, thereby reducing cache and memory usage and

the dynamic instruction count. Fusing loops and optimizing the use of storage is

precisely the focus of our compiler work.

2.3 Compilers’ Tiling and Storage Optimizations

The compilers that perform tiling are too numerous to list. The SUIF project and

its relatives have contributed much over the years, including the award-winning

1991 paper by Wolf and Lam [37] and Blocking and Array Contraction Across

Arbitrarily Nested Loops Using Affine Partitioning by Lim et al. [29]. The SUIF

14

system is one of several capable of representing the reorderings that our system

can generate, but under what circumstances it would select them is unclear.

There are three main differences between the SUIF projects and our work.

First, their primary focus is on automatic parallelization whereas Titanium is an

explicitly parallel language. We start from the assumption that any parallel pro-

gram or sequential program should have highly efficient sequential code at its heart.

The key to our approach is to fuse loops as tightly as possible; the key to their ap-

proach is to minimize the degree of synchronization in automatically parallelized

code [28]. Second, we do more array contraction. SUIF does array contraction

only in the case where the array can be contracted to a scalar variable [29]. Both

their own work and the aforementioned manual optimization work indicates that

a more general form of array contraction, such as the one we have implemented, is

preferable. Third, we subject many compiler parameters to external control. Pa-

rameters include tile sizes and what optimizations to apply, among others. SUIF

picks parameters statically.

Strout et al. introduce universal occupancy vectors as a way to express equiv-

alence classes among an array’s indices [34]. If a compiler can determine that at

any time only one array element per equivalence class can be live, then the array

can be contracted. The fundamental difference between our approach and theirs

is that they assume tiling is going to be done after array contraction. Therefore,

they take pains to avoid introducing any new dependences during array contrac-

tion, and that adds extra complexity. As a result, their compiler has to solve (or

approximately solve) an NP-complete problem. Even worse, their approach is lim-

ited to contracting one dimension of an array, because two array indices are in the

same equivalence class if and only if they differ by some multiple of the universal

occupancy vector.

15

Thies et al. [35] describe a unified mathematical framework for analyzing the

tradeoffs between parallelism and storage allocation in a parallelizing compiler.

Their work is based on Strout et al.’s universal occupancy vectors, and shares

some of the same limitations. In particular, their system can at best contract one

dimension of an array.

Incidentally, even in the case where contracting one dimension of an array is

theoretically optimal, our system can often contract most of the array to a fixed

number of scalars. This is explained in §6, and illustrated in figure 6.2.

Kodukula et al. describe a system that fuses loops aggressively and performs

hierarchical tiling [23]. However, their system works by grouping all loop itera-

tions that touch a given parallelogram of a given array. This can work well for

dense linear algebra. Unfortunately, it relies on an assumption that one array can

provide a one-to-one mapping to—and thus a tiling of—all loops’ iteration spaces.

Therefore, as they mention, their system cannot handle stencil codes such as Jacobi

or Gauss-Seidel. Another difference is that we place more emphasize on storage

optimizations.

Flynn Hummel et al. advocate “fractiling,” a method that uses tilings with

many different tile sizes [16]. For simplicity we have only investigated tilings that

tile all space with a single tile.

2.4 Parameter Searching

A compilation system that does not expose parameters for tuning is necessar-

ily suboptimal, because no compiler that takes finite time can always guess the

best parameters for all programs. Projects that use parameter searching include

PHiPAC [7], ATLAS [36], Sparsity (Im [17]; Im and Yelick [18]), BeBOP [6],

16

FFTW ([12]), and “iterative compilation” (Kisuki et al. [21]; Kisuki et al. [22];

O’Boyle et al. [31]).

PHiPAC and ATLAS automatically generate numerous variants of matrix mul-

tiply or other kernels in an attempt to select the best one for a particular task

on a particular machine. These systems are instructive for both their absolute

success and their relative success. The former, now measured in GFLOPS, com-

petes admirably with experts’ hand-written assembler. The latter, their success

versus traditional compilation techniques, is also striking. PHiPAC and ATLAS

use hand-crafted templates for handling edge cases, copying data, prefetching, se-

lecting regions of parameter search space, and so on. That, and the tremendous

advantage in code generation speed, make it difficult for a general-purpose compiler

to keep up.

As far as tuning parameters in a compiler, Bodin, Kisuki, O’Boyle, and others

have demonstrated that “iterative compilation” is a valuable technique. One in-

teresting result of theirs is that simulated annealing and at least four other search

techniques that they tried all have about the same performance characteristics. We

have been reasonably happy with simulated annealing and their efforts make us

feel even more comfortable going forward. Their work on combining the brute force

of parameter searching with modelling techniques is a possible future direction for

us.

17

Chapter 3

Background on Titanium

3.1 Introduction

Titanium is a dialect of Java for high-performance computing (Hilfinger et al. [14];

Yelick et al. [41]). This chapter introduces some salient features of the language.

We also describe basic loop analyses and optimizations in tc, an optimizing com-

piler for the Titanium language. The rest of the backend is just briefly outlined as

it is only marginally relevent to this dissertation.

Titanium includes many features designed to facilitate scientific programming.

Most prominent are a global address space with a distinction between local and

global pointers in the type system, SPMD parallelism, unboxed objects, tem-

plates, operator overloading, new data types for points and sets in Z
N , statically-

enforced synchronization constraints [1], and region-based memory management

with garbage collection [13].

The most important new types are: multidimensional arrays; Point<N>, an

N -tuple of integers; Domain<N>, an arbitrary set of N -tuples of integers; and

RectDomain<N>, a set of N -tuples of integers that can be specified by a lower

18

bound, upper bound, and stride in each dimension. The domain of an array is a

RectDomain, and arrays are indexed with Points. The operations on RectDomains

and Domains are typical set operations, such as D + E to compute the union of D

and E. The components of Points may be accessed via array notation; the first

component of p is p[1].

To facilitate optimization, an array-bounds violation is a fatal error that causes

the program to halt when it occurs or before. In particular, we need not execute

any part of a loop if we detect that an array bounds violation must occur in the

loop. Similarly, a number of errors that would just lead to an exception being

thrown in Java may, in Titanium, cause undefined behavior or halt the program.

Titanium’s memory consistency model allows reordering optimizations as long

as dependencies are preserved, even if the reorderings could be observed by other

threads. To preserve a stronger, sequentially-consistent semantics, we would need

to add cross-thread analysis such as that described by Krishnamurthy [24].

3.2 Overview of tc

There exists one compiler for Titanium: tc. Its design goals are performance of

generated code, portability, extensibility, and ease of implementation. We com-

pile Titanium to an intermediate language that represents a program as an ab-

stract syntax tree (AST). Most intermediate language statements resemble stan-

dard three-address codes; control constructs such as for, while, break, continue,

and ?: are rewritten to use if and unconditional branches. Code in intermediate

form is optimized and converted to C. We rely upon the C compiler for register

allocation, instruction scheduling, and some optimization. The running time of

19

tc is not an issue (unless tiling with very large tile sizes) because the C com-

piler and linker following tc take much longer. Current target platforms include

the IBM RS/6000 Large Scale Servers (formerly known as SP-2 and SP-3), Tera

Multithreaded Architecture, Cray T3E, Sun/Solaris SMPs, IRIX SMPs (includ-

ing the Origin 2000), Linux SMPs, SMP clusters, networks of workstations, and

uniprocessors.

Analyses and optimizations in tc include inlining, control flow analysis, use/def

analysis, finding loop invariant code, finding how certain integer-valued expres-

sions change in loops, strength reduction, lifting loop-invariant code, lifting bounds

checks from loops, dead-code elimination, Stoptifu, and more. The basic optimiza-

tions were selected to achieve reasonable performance. For most (ideally all) Tita-

nium programs we want performance comparable to or better than the equivalent

C or FORTRAN program. More advanced optimizations—which are not fully ex-

plained herein—were selected according to the research interests of group members.

Local qualification inference (Liblit and Aiken [26]), data sharing inference (Lib-

lit, Aiken, and Yelick [27]), statically-enforced synchronization constraints (Aiken

and Gay [1]), and region-based memory management (Gay and Aiken [13]) are

orthogonal to this dissertation.

The rest of this chapter describes the analysis and transformation of loops in

detail (excluding Stoptifu). Of particular note is our new algorithm for simulta-

neously finding loop invariant code and finding how certain integer- and Point-

valued expressions change (§3.3.1). Code transformations on loops are discussed

in §3.4. An important and unusual transformation is offset strength reduction, or

the reduction in strength of an address calculation to a constant offset plus some

pointer (§3.4.3). Finally, we describe the elimation of useless assignments (§3.5).

20

3.3 Analysis of Loops

We want both to offer our users performance similar to that of other languages and

to offer researchers a platform for implementing new, experimental optimizations.

The latter goal requires accurate analysis of array indices in loops. The bulk

of the optimizations we do are loop optimizations because our focus is scientific

programming.

The primary form of iteration in Titanium is foreach (p in D) S, where the

iteration space, D, is an arbitrary subset of Z
N ; S is any statement; and N is

a compile-time constant. The semantics of foreach specify that the body, S, be

executed |D| times with p bound to each element of D in turn. However, the order

in which p iterates through D is unspecified.

Although foreach loops can iterate over Domains or RectDomains, we often

assume that iterations are over RectDomains. A Domain is currently implemented

as a list of RectDomains. A loop

foreach (p in D) { ... }

for a Domain D is implemented as

for every RectDomain R in the list comprising D

foreach (p in R) { ... }

which is eminently correct, though perhaps not best. A version of foreach that is

guaranteed to iterate through a Domain in lexicographic order has been discussed

but not yet added to Titanium.

Given that we compile to C one should ask why tc needs loop optimizations,

such as strength reduction, that are contained in every C compiler. Alas, Tita-

nium’s data types are not analyzed very well by most C compilers. Furthermore,

21

we may have more information (or can better use what information we have) than

the C compiler. The complications due to Titanium’s high-level array type are

discussed further in the section on strength reduction (§3.4.2).

3.3.1 MIVE and Loop Invariant Expressions

We present a novel loop analysis algorithm that provides information for all of

our loop optimizations. The output of the algorithm is two-fold: a set of loop-

invariant expressions, and polynomials describing the value of expressions in terms

of the values of induction variables and loop invariants. The former output is

self-explanatory.

The purpose of each polynomial is to represent the value of some expression in

a loop. We attempt to create a polynomial for every int-valued expression inside

a foreach loop. All polynomials are scalar and are in terms of 32-bit constants

and induction variables (ints). The induction variables are the enclosing loops’

iteration variables, while the constants are either known integers at compile time

or expressions of type int that are loop invariant with respect to the innermost

enclosing loop. Example:

foreach (p in D) { a[p * [2, 3]] = 42; }

Here, the expression p has type Point<2> and we do a component-wise multipli-

cation with [2, 3], another Point<2>. As all polynomials are scalar we compute

a separate polynomial for each component of a Point-valued expression. In the

example, 2p1 and 3p2 would be the polynomials for p * [2, 3].

Our representation of polynomials is straightforward. A polynomial is a sum of

terms; a term is a product of an integer coefficient and zero or more factors; and a

factor is a symbolic variable representing an induction variable or a loop invariant

expression. Polynomials are always simplified to a canonical form.

22

3 3
p[1] + 3 p1 + 3

p 〈p1, p2, . . . , pn〉
i i or 〈i1, i2, . . . , in〉

p + q 〈p1 + q1, p2 + q2, . . . , pn + qn〉
q + p 〈p1 + q1, p2 + q2, . . . , pn + qn〉
p * i 〈i1p1, . . . , inpn〉 or 〈ip1, . . . , ipn〉
p + p 〈2p1, 2p2, . . . , 2pn〉
p * p 〈p1

2, p2
2, . . . , pn

2〉

Figure 3.1: Sample MIVEs. On the left, source code; on the right, MIVEs. Assume
p and q are Points and that i is either a Point or a scalar. Also, all variables in the
examples are either induction variables or loop invariant expressions.

23

All of our loop optimizations use this analysis. Optimizations that reorder code

work better with such detail than with summary information provided by simpler

approaches such as dependence vectors.

The data structure in the compiler for handling collections of polynomials is

a MIVE, an acronym for “Map from Induction Variables to Expressions.” Fig-

ure 3.1 gives a few examples. A MIVE for an integer-valued expression is a scalar

polynomial; a MIVE for a Point<N>-valued expression is an ordered sequence of

N polynomials. A MIVEcontext is a set of variables that can appear in the polyno-

mials. There is one MIVEcontext per loop and it initially contains only variables

for each dimension of the iteration point of the loop. We will use pk to represent

the variable for the kth dimension of p in foreach (p in ...) { ... }. The

MIVEcontext grows as integer- or Point-valued loop-invariant expressions are dis-

covered.

Although MIVEs can express exquisitely detailed information on many ex-

pressions, we did not want to limit our opportunities for invariant code motion

to integer- and Point-valued expressions. Instead, we separately label some ex-

pressions as loop invariant by using simple rules on expression trees (e.g., the

sum of invariants is invariant) and flowing results from defs to uses. Combin-

ing the calculations of MIVEs and loop invariants into a single algorithm works

nicely (figure 3.2). In pseudocode we use TreeNode as the class of an AST node;

ForeachNode, ExprNode, and so on are subclasses of TreeNode.

The algorithm uses a work list consisting of expression nodes that need to be

visited. To visit a node means to determine its MIVE and to determine whether it

is loop invariant by using a local examination of the node. Whenever information

about a node is updated we add nodes that may be affected to the work list. For

example, when analyzing

24

void TreeNode::loopAnal():

for each child, C,

C->loopAnal();

void ForeachNode::loopAnal():

for each child, C,

C->loopAnal();

foreachAnal(this);

void foreachAnal(ForeachNode *l):

Worklist W = expressions in l;

MIVEcontext MC;

Add to MC a MIVE for each dimension of the iteration point of l;

while (W is not empty) {

take t from W;

find MIVE for t,

determine whether t is a loop invariant expression

with respect to l, and add nodes to w as necessary;

}

Figure 3.2: Algorithm for MIVE and loop invariant analysis

25

foreach (p in D) {

a[p] = b[p + i] * Math.pow(2.0, 3.0);

}

(a)

foreach (p in D) {

x = p + i;

y = b[x];

z = Math.pow(2.0, 3.0);

a[p] = y * z;

}

(b)
Initialize work list
Introduce p1 for p[1]
Take D from worklist; invar: yes
Take i from worklist; invar: yes; Introduce i1; MIVE: 〈i1〉
Take p1 from worklist; invar: no; MIVE: 〈p1〉
Take p + i from worklist; invar: no; MIVE: 〈p1 + i1〉
Take x = p + i from worklist; invar: no; MIVE: 〈p1 + i1〉
Take b from worklist; invar: yes
Take x2 from worklist; invar: no; MIVE: 〈p1 + i1〉
Take b[x] from worklist; invar: no
Take y = b[x] from worklist; invar: no
Take Math.pow(2.0, 3.0) from worklist; invar: yes
Take z = Math.pow(2.0, 3.0) from worklist; invar: yes
Take z4 from worklist; invar: yes
Take y4 from worklist; invar: no
Take y * z from worklist; invar: no
Take p4 from worklist; invar: no; MIVE: 〈p1〉
Take a from worklist; invar: yes
Take a[p] from worklist; invar: no
Take a[p] = y * z from worklist; invar: no

(c)

Figure 3.3: (a) source code; (b) Intermediate form; (c) list (highlights) of operations
performed. Superscripts are for disambiguation and refer to line numbers (1–4) within
the body of the loop.

26

b = a + 2;

c = b + 7;

we add the node for b in the second line to the work list if we discover new

information about the first b. In addition to following def-use edges, we add the

parent of a node to the work list if the parent may be affected by new information

about its child. So, if the MIVE for the first b changes to a + 2 then the use of b

will get the same MIVE, causing its parent, b + 7, to be added to the work list.

When b + 7 is analyzed we will assign it the MIVE a+9, and a+9 will eventually

become the MIVE for c and for the assignment c = b + 7.

One could calculate loop invariant expressions first and then calculate MIVEs

in separate pass, but it is not necessary. Figure 3.3 illustrates the whole algo-

rithm on a simple example. The loop body in figure 3.3 is simple straight-line

code and therefore it is only necessary to visit each node once. Even in complex

programs, nodes are seldom visited more than a few times. We are able to mark

Math.pow(2.0, 3.0) as loop invariant because we have built knowledge of certain

standard libraries in to tc.

3.4 Loop Optimizations

Once we have analyzed a foreach loop and all foreach loops nested inside it, we

are ready to do optimizing transformations. The transformations are familiar but

there are some twists in Titanium and in our implementation. One common theme

is that when we move code out of a loop it comes all the way out; in most other

languages, Titanium’s foreach on a n-dimensional iteration space is expressed as

n nested loops and a compiler might only move code out of the innermost loop.

It should be noted, however, that we tend not to move code out of multiple levels

27

of foreach loops because we do not have an analysis that determines whether a

nested loop has greater than zero iterations. We penalize the programming style

that uses nested 1-dimensional loops when an n-dimensional loop could have been

used.

Unless otherwise noted, the sections that follow assume n-dimensional foreach

loops with iteration point p whose MIVE is 〈p1, . . . , pn〉.

3.4.1 Lifting Loop Invariants

The Basic Idea

Even if invariant code motion is turned off, this pass transforms

foreach (p in D) { ... }

to

if (!D.isNull()) { foreach+ (p in D) { ... } } ,

where foreach+ denotes an iteration known to be non-empty. The foreach+ is

preceded by assignment statements that could legally be moved there, if any. We

lose nothing by only moving assignment statements because nothing interesting

can really happen in our intermediate form except in an assignment statement.

The determination of what may legally be moved out of a loop uses standard

techniques (e.g., Aho et al. [3]).

Eliminating Some Redundancy

An important twist is that we eliminate some redundant variables along the way.

At present we do not implement global common subexpression elimination (CSE).

However, our technique yields some of the benefit of CSE without requiring a

separate pass. It was also easy to implement (figure 3.4).

28

// l is the loop; toBeMoved is the list of nodes to be moved.

StatementNode *liftInvariantCode(ForEachStmtNode *l,

list<TreeNode *> toBeMoved):

list<TreeNode *> result = empty list;

set<TreeNode *> movedSoFar = empty set;

bool progress;

for each c in toBeMoved,

set pre[c] to the set of nodes that must be moved prior to c;

set<Patch> patches = empty set;

do {

progress = false;

for each c, whose form is "LHS = RHS", in toBeMoved

if (c is not in movedSoFar &&

pre[c] is a subset of movedSoFar) {

add c to movedSoFar;

if an assignment with equivalent RHS has already been moved {

TreeNode *previous = the LHS of that assignment;

adjoin <LHS, previous> to patches;

append "LHS = previous" to result;

} else

append c to result;

progress = true;

}

} while (progress);

remove all elements of movedSoFar from l;

apply patches to l;

prepend result to l;

return l;

Figure 3.4: Pseudocode for invariant code motion

29

An important benefit of eliminating some redundancy is best illustrated by

example:

foreach (p in D) { a[p] = (a[p + [1]] + a[p - [1]]) / 2; }

might become

foreach (i in D) {

m = this.a; n = i + [1]; o = m[n];

p = this.a; q = i - [1]; r = p[q];

s = o + r;

t = s / 2;

u = this.a; u[i] = t;

}

in the unoptimized intermediate form. With lifting and redundancy elimination

we rewrite it to:

if (!D.isNull()) {

m = this.a;

p = m; /* Useless. Will be eliminated in subsequent pass. */

u = m; /* Useless. Will be eliminated in subsequent pass. */

foreach+ (i in D) {

n = i + [1]; o = m[n];

q = i - [1]; r = m[q];

s = o + r;

t = s / 2;

m[i] = t;

}

}

30

which is much better because having multiple uses of the same variable, m, ex-

poses opportunities for subsequent optimization. In particular, if the three array

expressions did not transparently refer to the same array, then offset strength

reduction (§3.4.3) would not be allowed.

3.4.2 Strength Reduction

Strength reduction is one of the most important optimizations in the history of

computing because strength reduction allowed early FORTRAN codes to get per-

formance similar to hand-coded assembly language. But for strength reduction

the widespread adoption of high-level languages might have been greatly delayed.

Strength reduction of array address calculations simplifies the code generated to

access an array. For example, in

foreach (p in D) { x += a[p]; }

the value of a[p] may be compiled into a mere pointer dereference. Of course, the

compiler must also insert code to initialize the pointer and update it.

The generality of Titanium’s m-dimensional arrays leads inevitably to compli-

cated address calculations. The address of a[p] is:

b +

m∑

i=1

pi − si

di
ki ,

where b and each si, di, and ki are integer constants stored in the descriptor for a.

We require, without loss of generality, that di ≥ 1. We must have a multiplication

for each dimension because the distance in memory between a[1] and a[2] could

be a million bytes. We must have a division for each dimension because the distance

in memory between a[1] and a[1000] could be one byte. And we must have a

subtraction if we want to make the division come out evenly. (We could eliminate

31

foreach (p in R) { A[...] = 42; }

becomes, in C:

...

while (x0 != ex0) {

int *x1 = x0;

int *ex1 = x1 + lx1;

while (x1 != ex1) {

int *x2 = x1;

int *ex2 = x2 + lx2;

while (x2 != ex2) {

*x2 = 42;

x2 += ∆x2;

}

x1 += ∆x1;

}

x0 += ∆x0;

}

Figure 3.5: Generic strength reduction for a 3D rectangular iteration

the subtraction if we were willing to replace normal division with division that

always rounds to −∞. We do the subtraction because it is cheaper on most

hardware.)

The division in the address calculation will come out evenly if the index is in

the domain of the array and the array descriptor is properly constructed. In fact,

Titanium has bounds checking and the application programmer cannot directly

construct or modify an array descriptor, so the division will always come out evenly.

However, any straightforward translation of Titanium into C will not convince the

C compiler that the division will always come out evenly. It would have to go to

great lengths—beyond what is realistic—to know all that we know. As a result,

we cannot rely on the C compiler to strength reduce our address calculations.

We are therefore forced to do some strength reduction of address calculations

in tc—at least enough to remove the division from the inner loop. Given that we

32

static Point<1> find(int [1d] A, int val) {

foreach (p in [0 : N])

if (A[p] == val)

return p;

return [-1];

}

Figure 3.6: Strength reduction is performed on this method even though the loop is a
partial domain loop. The code to set up the pointer for accessing A[p] and its increment
must be prepared for the array being null or for the domain of the array being a proper
subset of the iteration domain. The code for the body of the loop will include a bounds
test.

must do that much and that we have better information, we decided to go all the

way.

Our goal is to generate code similar to that in figure 3.5. What we choose to

reduce in strength is dictated by our choice to require that the change to a pointer

each iteration be integral and iteration-space invariant. Strength reduction is tricky

for loops such as

foreach (p in D) { if (f()) sum += A[expr]; }

because A[expr] may be evaulated sporadically or not at all. The pointer update

in every iteration might therefore slow the program down if A[expr] is seldom

used. Furthermore, the change in the address of A[expr] per iteration may not

be integral. If we did strength reduce the address calculation, we would have to

add extra logic beyond what is shown in figure 3.5. Instead, we allow an index

expression for a particular array to be strength reduced only in two cases:

1. The expression must index the array in every iteration, and every iteration

must occur (barring a fatal error).

2. The expression must index the array in every iteration, except possibly

the last runtime iteration, which could be cut short by a goto, return,

33

exception, or error.

We call these two cases the full domain case and the partial domain case; we also

classify loops as full domain loops or partial domain loops, where the former must

execute every iteration and cannot be cut short except by a fatal error. For the

purposes of strength reduction the cases are essentially the same; they both can be

compiled as shown in figure 3.5. The only difference is that in the partial domain

case one must ignore certain errors while setting up pointers and increments (see

figure 3.6). However, when one wants to lift array bounds checks from a loop, the

partial domain case and the full domain case are completely different (§3.4.5).

The requirement that the pointer increments be loop invariant is easily checked

given that we have MIVEs. For example, suppose the MIVE for an index expres-

sion e is 〈e1, . . . , em〉. Then we just check that

δi
j(e) =

∂ei

∂pj

is loop invariant for each i and for each iteration space dimension j = 1, . . . , n.

That is, we check that

∀m
i=1∀

n
j=1∀

n
k=1,

∂δi
j(e)

∂pk
= 0 .

3.4.3 Offset Strength Reduction (OSR)

Certain programs can benefit from a second kind of strength reduction. Compare

the translations of

foreach (p in R) { A[p + u] += A[p + v]; }

in figure 3.7. In cases where standard strength reduction would lead to multiple

pointers moving in lockstep, it is better to strength reduce all but one of those

34

...

while (x0 != ex0) {

int *x1 = x0, *y1 = y0;

int *ex1 = x1 + lx1;

while (x1 != ex1) {

int *x2 = x1, *y2 = y1;

int *ex2 = x2 + lx2;

while (x2 != ex2) {

*x2 += *y2;

x2 += ∆x2; y2 += ∆y2;

}

x1 += ∆x1; y1 += ∆y1;

}

x0 += ∆x0; y0 += ∆y0;

}

(a)
...

while (x0 != ex0) {

int *x1 = x0;

int *ex1 = x1 + lx1;

while (x1 != ex1) {

int *x2 = x1;

int *ex2 = x2 + lx2;

while (x2 != ex2) {

*x2 += *(x2 + o);

x2 += ∆x2;

}

x1 += ∆x1;

}

x0 += ∆x0;

}

(b)

Figure 3.7: (a) näıve translation of code amenable to OSR, (b) translation with one
address calculation strength reduced to an offset off another pointer

35

address calculations to a constant offset from one pointer that does move. In fig-

ure 3.7(a), all the calculations involving the yi’s and ∆yi’s are unnecessary if we in-

troduce o, the difference between the addresses of A[p + u] and A[p + v]. Fewer

variables are needed, reducing register pressure. Fewer instructions are needed be-

cause fewer pointers need to updated. In addition, most architectures allow a load

such as (C notation) r1 = *(r2 + r3) to be expressed in one instruction that is

just as efficient as any other load.

We call this optimization Offset Strength Reduction (OSR). Using MIVEs, it

is trivial to determine when it is legal to apply OSR. Suppose A[e] and A[f] both

occur in a loop, e and f being arbitrary expressions. Let the MIVEs for e and f

be 〈e1, . . . , em〉, 〈f1, . . . , fm〉. OSR is legal if the difference between e and f is loop

invariant and the address of A[e] is an available expression at the use of A[f].

The former condition is just

∀m
i=1∀

n
j=1,

∂

∂pj
(ei − fi) = 0 .

Whether A[e] is strength reduced is irrelevant. To give an unlikely example, one

could use OSR in a loop such as

foreach (p in D)

A[p * p] += (B[p] ? A[p * p + i] : A[p]);

on the address of A[p * p + i]. One can compute the difference between that

address and the address of A[p * p] and store it in an int, knowing that either

the difference will be integral or it will never be used.

In our implementation we use OSR in fewer cases than we could; we require

that A[e] be strength reduced and that A[f] would be strength reduced in the

traditional manner if not for OSR. In practice, there is little difference between

36

// Determine whether the usage of A in Loop indicates that

// A’s stride must be 1 (or -1) in the given dimension.

// S is the set of MIVEs of accesses to A that are strength

// reduced (including OSR).

bool UnitStrideInference(TreeNode *Loop, TreeNode *A, int dim,

set<MIVE> S):

int g = 0;

for every possible pair of elements in S {

MIVE d = the absolute value of the difference between

the pair in dimension dim;

if (d is a known integer) {

g = (g == 0) ? d : gcd(g, d);

if (g == 1)

return true;

}

}

return false;

Figure 3.8: Pseudocode for Unit Stride Inference

our rules and the more aggressive alternatives. We might benefit slightly by using

OSR more, but ratio of benefit to cost of implementation is low.

3.4.4 Unit Stride Inference

If an array A has unit stride in its ith dimension then we can simplify its address

calculations and bounds checks. We have implemented a modest algorithm for

inferring unit strides at the level of a foreach loop (figure 3.8). For example, it

will infer that A must have unit stride in this loop:

foreach (p in D) { A[p] = A[p + [2]] * A[p + [5]]; }

because gcd(2, 3, 5) = 1. We did not bother with a polynomial gcd, though that

would have allowed us to handle cases such as:

foreach (p in D) { A[2 * p] += A[4 * p + [1]]; } .

It would be nice to transfer the knowledge gained to other uses of A, but that

37

would require knowing that the loop has greater than zero iterations. If the loop

has zero iterations at runtime then we cannot infer anything about the array’s

stride.

Let σi be the stride of A in its ith dimension. When we infer from A’s usage

in a given loop that σi = 1, we output code in the loop header that aborts if the

loop’s domain is not empty and σi 6= 1. Then divisions by σi and array bounds

checks of the form “σi must divide x” may be omitted. (Actually, usage can at

best imply σi = ±1, but strides are always positive in our implementation.)

3.4.5 Lifting Bounds Checks

Titanium’s garbage collection and array-bounds checking eliminate most of the

bugs that appear in typical C, C++, and FORTRAN programs. Although it can

be disabled for speed, we believe that most programmers will want to enable array

bounds checking most of the time.

For simplicity, the only bounds checks we optimize are on index expressions that

have been strength reduced (including OSR). By our rules, these index expressions

are guaranteed to appear on every loop iteration.

We move some array bounds checks to the headers of full domain loops, but

each array access in a partial domain loop is individually checked. For the following

discussion, assume we are optimizing an array-bounds check for an expression A[e]

that appears inside a full domain foreach loop with iteration point p and domain D.

Let the MIVEs of e and p be 〈e1, . . . , em〉 and 〈p1, . . . , pn〉. Let the domain of the

array A be

{(x1, . . . , xm) | ∀m
i=1(αi ≤ xi ≤ βi ∧ σi divides (xi − αi))} .

38

Let D, the iteration space, be

{(y1, . . . , yn) | ∀
n
j=1(γj ≤ yj ≤ µj ∧ τj divides (yj − γj))} .

Let the changes in e as p changes be described by

δi
j(e) = the change in ei for a minimal change in pj = τj

∂ei

∂pj

.

All of the δi
j’s are constant integers because of the requirement that A[e] is a

strength-reduced index expression. At compile time they may or may not be

known integers.

Our strategy for optimizing an array bounds check for A[e] is to divide the

check in four parts. For each array dimension i:

1. Minimum over D of ei ≥ αi.

2. Maximum over D of ei ≤ βi.

3. σi divides the value of ei − αi at (γ1, . . . , γn).

4. ∀n
j=1, if γj 6= µj then σi divides δi

j(e).

If all of the above conditions hold for all the dimensions, then A[e] is in bounds

for the whole iteration. If any are violated, then we halt the program with an

appropriate error message.

Of the four tests, we try to omit those that we can. Any dimension for which

unit stride is inferred does not need the last two tests; there will just be a run-

time check that σi = 1. We can omit one or both of the first two tests if other

index expressions are known to be more extreme. For example, suppose A[e]

and A[e - [1, 0, 0]] are both to be checked in the header of a loop. If the

39

// Generate max and min tests for dimension dim of A in Loop.

void generateBoundsChecks(TreeNode *Loop, TreeNode *A,

int dim):

set<MIVE> s = the set of MIVEs used for strength reduced accesses

to array A in Loop;

generateMinBoundsTest(Loop, A, dim, mightBeMinimum(s, dim));

generateMaxBoundsTest(Loop, A, dim, mightBeMaximum(s, dim));

void generateMinBoundsTest(TreeNode *Loop, TreeNode *A,

int dim, set<Polynomial> candidates):

string minUsed = findMin(Loop, A, dim, candidates);

Emit "assert(minUsed >= αdim);";

// If any pair of elements differ by a known integer constant then

// the larger of the two need not be included in the result.

set<Polynomial> mightBeMinimum(set<MIVE> s, int dim):

set<Polynomial> result = empty set;

outer:

for each m in s {

Polynomial p = the polynomial for m in dimension dim;

for each i in result {

Polynomial diff = i - p;

if (diff is a known integer) {

if (diff > 0)

Remove i from result and replace it with p;

continue outer;

}

}

adjoin p to result;

}

return result;

Figure 3.9: Pseudocode for generating minimum and maximum array bounds
tests. Overbar notation indicates insertion of values into a string. We omit
generateMaxBoundsTest() and mightBeMaximum(). Code for findMin() is on the next
page.

40

// The candidate set contains the polynomials whose

// minimums we need to consider. Generate code to find the

// minimum of those and return a string that represents the result.

string findMin(TreeNode *Loop, TreeNode *A,

int dim, set<Polynomial> candidates):

list<string> possibleMin = empty list;

for each e in candidates {

string s = "0";

for j from 1 to n {

string sj;

Polynomial d = ∂
∂pj

e;

if (d == 0)

continue;

else if (d is a known integer)

sj = "d * (d > 0) ? γj : µj";

else {

string t = code for polynomial d;

sj = "(t * ((t > 0) ? γj : µj))";

}

s = "s + sj";

subtract pj times d from e;

}

string leftover = code for polynomial e;

string v = name of a newly-declared int-valued variable;

Emit "v = s + leftover;";

add v to possibleMin;

}

return minOfListOfVariables(possibleMin);

Figure 3.10: Function to generate code that finds the minimum over a loop’s iteration
space of all of a set of candidate polynomials. Overbar notation indicates insertion of
values into a string.

41

minimum of e1 − 1 is greater than or equal to α1 then the minimum of e1 must be

as well. Our technique for generating the minimum and maximum tests is shown

in figures 3.9 and 3.10.

Figure 3.10 shows how to generate code for the minimum over D of ei. Given

that all of the δi
j’s are constants, the minimum of ei must occur at one of the

2j corners of the iteration space. Which corner is determined by whether ei is

increasing or decreasing with respect to each pj. For example, the minimum of

3 * p[1] - 5 * p[2] + p[3] is 3γ1 − 5µ2 + γ3.

3.5 Useless Assignment Elimination

The elimination of useless assignment statements is most important when other

optimizations are activated. For example, the program in figure 3.11 contains

statements to calculate v and w that are useless if the array access A[w] is strength

reduced. If we do not remove those statements then we are at the mercy of the

C compiler. Surprisingly, the useless statements, when translated into C, are

not always recognized as such. Our data structure for a Point<N> is a struct

containing N integers; our functions manipulating Points are declared static

inline. Somehow that is opaque enough to some C compilers that we must do

our own useless assignment elimination.

Given that we must do some elimination of useless assignments, we imple-

mented the simple algorithm shown in figure 3.12. Though many more clever

algorithms exist, this one has served us well.

42

foreach (p in D) {

Point<2> v = p * 2;

Point<2> w = v + [0, 1];

A[w] = 11;

}

Figure 3.11: A program fragment that can benefit from useless assignment elimination
after the array access is strength reduced. Programs expressed in tc’s intermediate
representation are full of similar examples. If this were a partial domain loop then v and
w would be necessary because a bounds check would be performed on every iteration.

// m is a method for which we shall find useless assignments.

// We initially assume that every assignment is useless.

set<TreeNode *> uselessAssignments(TreeNode *m):

set<TreeNode *> presumedUseless = all assignments in this;

bool progress;

do {

progress = false;

for each assignment in presumedUseless {

if (!useless(assignment, presumedUseless)) {

remove assignment from presumedUseless;

progress = true;

}

}

} while (progress);

return presumedUseless;

bool useless(TreeNode *assignment, set<TreeNode *> presumedUseless):

if (result of assignment is used by

a statement not in presumedUseless)

return false;

else if (assignment has side-effects or may cause

an exception or error)

return false;

else

return true;

Figure 3.12: Pseudocode for finding useless assignments. It assumes we have use-def
information.

43

Chapter 4

On Reordering Loops

4.1 Introduction

4.1.1 Purpose

We are interested in reordering loops primarily as a means to improve temporal

locality. Stencil codes such as multigrid are our motivating example. In multigrid

many temporary values are only used once, and good performance can be achieved

only if the bulk of those temporaries are used and discarded without ever leaving

the CPU. That typically requires fusing the loops that produce and consume a

given stream of temporaries. The way we fuse loops is driven by dependences,

which typically correspond to the flow of data. If the i iteration-space nodes in

one loop produce d data that are consumed by j iteration-space nodes in another

loop then our dependence driven approach usually produces tiles with a ratio of i

nodes of the one loop to j nodes of the other.

The design goals of our reordering engine include generality and parameter-

ization. We also aggressively fuse and tile loops even when runtime tests are

44

necessary to ensure safety. Parameterization allows the aggressiveness to be tem-

pered by striving to satisfy the programmer’s fitness criterion. For example, while

the methods presented below can fuse any number of loops, the parameterization

allows the opportunity to fuse the “right” number.

The space of parameters is searched using a fitness criterion that is unknown

to tc and Stoptifu. It is usually the time to perform some calculation. Regardless,

we chose not to explicitly model register reuse or cache behavior or other factors

that tend to correlate with the fitness of a reordering transformation. We felt it

was more important to implement the transformations that might be necessary

for best results and to hope that a parameter search will eventually find favorable

parameters. Inadequate transformations may be impossible to be overcome, but

inadequate estimation of parameters’ value at worst prolongs the time to reach the

best parameters. So for now, we value a set of parameters by compiling, running,

and measuring the program being optimized.

4.1.2 Terminology

We often refer to ordering constraints. We mean this in a general sort of way,

although in our implementation these can only be dependences that arise when

two statements may touch the same data, at least one of them writing. The

kinds of ordering constraints are therefore read-after-write, write-after-write, or

write-after-read. A sample is: “iteration p of loop 0 must precede iteration p +

[1, 0] of loop 1 because the latter reads a value that is stored by the former.” In

general, we store which loops are involved, which pairs of iterations, and the kind

of ordering constraint. We use the Omega library [20] to manipulate integer tuple

relations and sets. In particular, the Omega library can construct relations and sets

using Presburger formulas, which include affine equality and inequality constraints,

45

logical operators ¬, ∧, and ∨, and quantifiers ∃ and ∀. Our ordering constraints

are usually from one iteration space to another, and although one might view each

as just Z
N , it is useful to think of them and manipulate them as separate vector

spaces. For example, subtracting a point in one loop’s iteration space from a point

in another loop’s iteration space is meaningless.

If we have executed a subset A of the iteration space of loop f then we can

define the ready set of loop g with respect to A as the set of nodes in the iteration

space of loop g that are not forbidden by any ordering constraints from loop f

to loop g. (This is computed by assuming that the complement of A has not

executed; only nodes that have a required precedent in Ā are excluded from the

ready set.) Using the above sample constraint, the ready set of loop 1 with respect

to {x | x1 + x2 < 3} is {x | x1 + x2 < 4}.

The notion of ready set can be extended. The ready set of loop g with respect

to A and B is the intersection of the ready set of loop g with respect to A and the

ready set of loop g with respect to B. (Typically A and B are subsets of different

iteration spaces.) Often we just use “the ready set” because the exact meaning

will be obvious from context.

4.1.3 Outline

The rest of this chapter describes tiling in Stoptifu, our library. We begin with

representation and selection of tilings of space. The crux of the chapter is the

algorithm to induce a tiling for n + 1 loops from a tiling for n loops (§4.4). After

exploring that algorithm and some variants, §5 begins with the Stoptifu/tc inter-

face. It continues with implementation details related to tiling on the tc side of

that interface. The detailed treatment of Stoptifu internals concludes with storage

optimizations (§6).

46

4.2 Dividing R
N into an ordered set of paral-

lelepipeds

As in §1.3 we begin by tiling an N -dimensional space. Our implementation puts

no restrictions on the actual size or shape of the iteration space, which in general

is not known at compile time.

Tiling a single loop in Titanium is trivial. The Stoptifu library has code to

handle ordering constraints within a loop (e.g., due to data dependences). However,

foreach loops in Titanium, which are unordered, never have such constraints. For

the rest of the chapter we will discuss Stoptifu in that context.

An N -dimensional space may be tiled in any number of ways. One way is to

select three points in Z
N , ζ, ν, and σ. We will refer to ζ as the zero, ν as the

normal, and σ as the deriv. Let R
N be divided by hyperplanes perpendicular to

the line containing ζ and ζ +ν through each of {. . . , ζ−σ, ζ, ζ +σ, . . .}. (We ignore

the degenerate cases, i.e., when ν = 0 or all the hyperplanes coincide.)

For the purposes of ordering, a point p ∈ R
N may be classified by:

c(p) =

⌊
(p − ζ) · ν

σ · ν

⌋

.

One may think of c(p) as the number of hyperplanes crossed by a line segment

from from p to ζ (counting +1 for a crossing aligned with the normal vector and

-1 for a crossing against it). The ordering requires that p ≺ q if c(p) < c(q).

Selecting a set of hyperplanes in this fashion reduces the N -dimensional tiling

problem to an (N − 1)-dimensional tiling problem. A second set of parallel hyper-

planes may be chosen for the reduced problem by picking a ζ ′, ν ′, and σ′. (We

47

again ignore the degenerate cases, i.e., when the normals are not linearly indepen-

dent, ν ′ = 0, or hyperplanes coincide.) The ordering now requires that p ≺ q if

c(p) < c(q) or if c(p) = c(q) and c′(p) < c′(q), where

c′(p) =

⌊
(p − ζ ′) · ν ′

σ′ · ν ′

⌋

.

This process may be applied repeatedly to divide R
N into an ordered set of

parallelepipeds that implies a tiling of Z
N having identical size and shape for all

tiles.

Observation 4.2.1 The volume of the parallelepipeds generated by this technique

is unaffected by changes to the zeroes or the normals. The volume is always equal

to the volume of a parallelepiped whose edges are congruent to σ, σ ′, etc.

4.3 Selecting a Tiling of One Loop

Parameters in the parameter file may be used to select different tilings for a single

loop, but, for simplicity, the division of space in our implementation always uses

ζ = 0. The exact details are not particularly important; readers may want to skip

to the next section.

Figure 4.1 shows pseudocode for picking the sets of hyperplanes. We do not

allow all possible tilings because many of them are illegal or unlikely to be useful.

In particular, we force each σ to be aligned with the corresponding ν. We also

force the last normal selected to be perpendicular to all other normals. Perhaps

that is unduly restrictive but, in practice, it works well. If a single loop may have

ordering constraints among its iterations, which is not the case in Titanium, then

relaxing the method for selecting the last normal is advisable.

48

Tiling pick_planes(Loop loop, list<OrderingConstraint> oc):

queue<vector> Q = vectors in Z
N sorted by taxicab order;

Discard from Q any vector that is a positive multiple of

a vector that precedes it;

list<set of parallel hyperplanes> hlist = empty list;

list<vector in Z
N> normallist = empty list;

for i from 0 to N - 2

int skip = get parameter0 "Skip how many normals?";

do {

do {

pop Q;

} until (front(Q) is not forbidden because of oc and

front(Q) is linearly indep. of previous normals);

skip = skip - 1;

} until skip < 0;

Append front(Q) to normallist;

permutation p = get parameteridentity "Permutation of {1, . . . , N − 1}?";
for i from 0 to N - 2

ν = element i of p(normallist);

int spacing = get parameter3 "Spacing?";

σ = the pos. multiple of ν with length closest to spacing;

h = hyperplanes with normal ν through {. . . ,−σ, 0, σ, . . .};
Append h to hlist;

vector last = some vector perpendicular to all normals in hlist;

last = last / gcd(last1, . . . , lastN);
if (oc indicates that last is illegal) {

last = -last;

if still illegal fail;

}

Let ν = last;

Let unroll = get parameter0 "Unroll?";

Let σ = (1 + unroll) * ν;
Let h = hyperplanes with normal ν through {. . . ,−σ, 0, σ, . . .};
Append h to hlist;

return tiling made from hlist;

Figure 4.1: Pseudocode for dividing space into parallelepipeds. N is the dimensionality
of the loop being tiled. Assumes N > 1. The purpose of the permutation p is to avoid
forcing taxicab order on normals in hlist.

49

Underlying pick planes() is a function (not shown) to determine whether a

normal vector should be allowed, given the ordering constraints. Our implemen-

tation rejects a normal, ν, if

∃σ such that the non-degenerate partial order dictated by c(p) =
⌊ p · ν

σ · ν

⌋

is inconsistent with the ordering constraints.

Again, this never applies to an unordered foreach.

After pick planes() determines an ordered set of parallelepipeds, an ordering

of points in each parallelepiped still must be chosen. In practice, it seems to matter

little for performance, but legality would be a concern if foreach were ordered.

We use lexicographic order (default) or reverse lexicographic order (if requested in

the parameter file).

If the parameters to select a tiling are left unspecified in the parameter file then

we use ζ = 0 and:

• in the 1-dimensional case tiles are thrice the size of trivial tiles:

. . . , [0] [1] [2], [3] [4] [5], etc., in that order;

• in the 2-dimensional case tiles are thrice the size of trivial tiles:

. . . , [0, 0] [1, 0] [2, 0], [0, 1] [1, 1] [2, 1], etc., in that order;

• in the 3-dimensional case tiles are nine times the size of trivial tiles:

. . . ,

[0, 0, 0] [0, 1, 0] [0, 2, 0] [1, 0, 0] [1, 1, 0] [1, 2, 0] [2, 0, 0] [2, 1, 0] [2, 2, 0],

[0, 0, 1] [0, 1, 1] [0, 2, 1] [1, 0, 1] [1, 1, 1] [1, 2, 1] [2, 0, 1] [2, 1, 1] [2, 2, 1],

etc., in that order;

• and so on.

50

foreach (p in D)

B[p] = (4 * A[p] + A[p + [1, 0]] + A[p - [1, 0]] +

A[p + [0, 1]] + A[p - [0, 1]]) / 8;

foreach (q in D)

A[q] = B[q];

Figure 4.2: Code for running example: a 2D stencil

We chose these defaults when little data were available, hoping to balance

performance gains against increased compilation time. As we gather more evidence

we will not hesitate to change the defaults.

4.4 Inducing a Tiling

Given a tiling for one loop and dependence information, we may induce a tiling

for a second loop immediately following the first. The same process may then be

applied again to induce tilings for subsequent loops. As an example, consider the

2-dimensional stencil code shown in figure 4.2. Figures 4.3 and 4.4 show a possible

tiling for the first loop alone and for both loops together. In the case where the

loops are not adjacent in the program text, we make some effort to move the

intervening code (see chapter 5).

Using the notation introduced earlier, assume we have a tiling for loops L0

through Ln−1 with tile size K, tile space T = Z
N × {0, . . . , K − 1}, and bijections

C0 through Cn−1 with Ci from {〈x, k〉 | l(k) = i} to the iteration space of loop Li.

Our goal is to induce a tiling for loops L0 through Ln.

In figure 4.3 (top), we have n = 1, K = 3, and C0(〈x, k〉) = [3x1 +k, x2]. A line

in tc’s output showing “derivs” for loop i indicates how Ci(〈x, k〉) changes when

x moves one unit in some direction. The order of the listing is deriv1, . . . , derivN ,

corresponding to directions [1, 0, . . . , 0], [0, 1, 0, . . . , 0], . . . , [0, . . . , 0, 1]. The K lines

51

begin tiling of 1 loop

3 nodes from loop 0 (Sample.ti:5)

derivs: [3, 0] [0, 1]

From Sample.ti:5 do [0, 0]

From Sample.ti:5 do [1, 0]

From Sample.ti:5 do [2, 0]

end tiling

begin tiling of 2 loops

3 nodes from loop 0 (Sample.ti:5)

derivs: [3, 0] [0, 1]

3 nodes from loop 1 (Sample.ti:8)

derivs: [3, 0] [0, 1]

From Sample.ti:5 do [0, 0]

From Sample.ti:8 do [-1, 0]

From Sample.ti:8 do [0, -1]

From Sample.ti:5 do [1, 0]

From Sample.ti:8 do [1, -1]

From Sample.ti:5 do [2, 0]

end tiling

Figure 4.3: Tilings for running example: top, first loop only; bottom, both loops. This
is the format that tc uses for printing such information. The loops are identified by
number (0 or 1) and also by their position in the source code (e.g., line 5 of the file
“Sample.ti”). The next figure diagrams the bottom tiling.

52

0

1

2

3

4

5

tile at 0

Figure 4.4: As in figure 1.1, the top shows a portion of the loops’ iteration spaces
with tiles outlined. (The first loop’s iteration space is on the left.) The tile at 0 is
highlighted. Below is T = Z

2 × {0, 1, 2, 3, 4, 5}, with only the tile at 0 shown. Part of
the correspondence between the three spaces is indicated.

53

foreach (p in D)

B[p] = (6 * A[p] + A[p + [1, 0, 0]] + A[p - [1, 0, 0]] +

A[p + [0, 1, 0]] + A[p - [0, 1, 0]] +

A[p + [0, 0, 1]] + A[p - [0, 0, 1]]) / 12;

foreach (q in D)

A[q] = B[q];

begin tiling of 2 loops

9 nodes from loop 0 (Sample3d.ti:5)

derivs: [3, 0, 0] [0, 3, 0] [0, 0, 1]

9 nodes from loop 1 (Sample3d.ti:9)

derivs: [3, 0, 0] [0, 3, 0] [0, 0, 1]

From Sample3d.ti:5 do [0, 0, 0]

From Sample3d.ti:9 do [-1, 0, 0]

From Sample3d.ti:9 do [0, -1, 0]

From Sample3d.ti:9 do [0, 0, -1]

From Sample3d.ti:5 do [0, 1, 0]

From Sample3d.ti:9 do [-1, 1, 0]

From Sample3d.ti:9 do [0, 1, -1]

From Sample3d.ti:5 do [0, 2, 0]

From Sample3d.ti:9 do [-1, 2, 0]

From Sample3d.ti:5 do [1, 0, 0]

From Sample3d.ti:9 do [1, -1, 0]

From Sample3d.ti:9 do [1, 0, -1]

From Sample3d.ti:5 do [1, 1, 0]

From Sample3d.ti:9 do [1, 1, -1]

From Sample3d.ti:5 do [1, 2, 0]

From Sample3d.ti:5 do [2, 0, 0]

From Sample3d.ti:5 do [2, 1, 0]

From Sample3d.ti:5 do [2, 2, 0]

end tiling

Figure 4.5: Additional example: top, code; bottom, default tiling.

54

Tiling merge(Tiling t, Loop new_loop, list<OrderingConstraint> oc):

t’ = induce_tile0(t, new_loop, oc, false);

if (t’ is empty) return t;

t’ = calculate_derivs(t’, t, new_loop, oc);

if (t’ is empty or !verify(t’, new_loop, oc)) return t;

return t’;

Figure 4.6: Pseudocode for merge(). Returns a new tiling that includes everything in
t and new loop, or t if unsuccessful.

55

Tiling induce_tile0(Tiling t, Loop new_loop,

list<OrderingConstraint> oc, bool only_one):

Let I be the iteration space of new_loop;

b = I \ {r | r forbidden by oc if p ≺ 〈0, 0〉 have executed};
list<steps> new_steps = empty;

int K = number of steps in t;

for k from 0 to K - 1

Append step k of t to new_steps;

s = I \ {r | r forbidden by oc if p � 〈0, k〉 have executed} \ b;
if (s is infinite) return empty;

for every element e of s

Append e to new_steps;

if (only_one) goto done;

b = b ∪ {e};
done:

Tiling t’ = t with new_steps;

return t’;

Figure 4.7: Pseudocode for induce tile0(). Returns a new tiling if successful. The
new tiling is incomplete insofar as the mapping from 〈x, k〉 in tile space to I is valid only
if x = 0. Returns empty if unsuccessful.

of the form “From ... do ...” indicate the steps of the tile, in order. Lexico-

graphic order on T determines execution order; in the example that yields the

order mentioned in the previous section as the default for a 2-dimensional tiling.

An additional example is shown in figure 4.5.

The idea of the merge() function (figure 4.6) is to induce a tile by stepping

through our tiling at a particular position in space, calculating whether and how

the induced tile should move as we move in tile space, and verifying that the whole

process has resulted in a legal reordering. If so, the result will be a tiling that is

similar to the one from which we began, but with one or more steps belonging to

Ln intermingled.

In figures 4.7 and 4.8 we illustrate how we attempt to extend a tiling from n

loops to n + 1 loops. The idea is the consider the tiles at 0 and at [1, 0, . . . , 0],

[0, 1, 0, . . . , 0], . . ., [0, . . . , 0, 1]. Our goal when stepping through the tile at 0 is

56

Tiling calculate_derivs(Tiling t’, Tiling t,

Loop new_loop, list<OrderingConstraint> oc):

list<vector in Z
N> result = empty list;

int first = min {k | step k of t’ belongs to new_loop};

for each v in {[1, 0, . . . , 0], [0, 1, 0, . . . , 0], . . . , [0, . . . , 0, 1]}
Tiling shift_t = t translated by v;

Tiling shift_t’ = induce_tile0(shift_t, new_loop, oc, true);

if (shift_t’ is empty) return empty;

int first’ = min {k | step k of shift_t’ belongs to new_loop};

if (first 6= first’) return empty;

Let I be the iteration space of new_loop;

Let f be the function in t’ that maps

from 〈0, first〉 to I;
Let f ′ be the function in shift_t’ that maps

from 〈0, first〉 to I;
Append f ′(〈0, first〉) − f(〈0, first〉) to result;

return t’ with derivs for new_loop specified by result;

Figure 4.8: Pseudocode for calculate derivs(). Makes t’ complete or returns empty
if it fails.

57

to determine what points in the iteration space of the new loop become available

for execution after each step. In the running example, iteration [0, 0] of loop 0

is the last time that loop touches A[−1, 0], so iteration [−1, 0] of loop 1 may

then execute. Iteration [0, 0] of loop 0 is also the last time that loop touches

A[0,−1], so iteration [0,−1] of loop 1 becomes available at the same time. (In the

example, since both [−1, 0] and [0,−1] became available at the same time, the tie

is broken by lexicographic ordering or reverse lexicographic ordering, depending on

a parameter.) Similar reasoning shows that after iteration [1, 0] of loop 0, iteration

[1,−1] of loop 1 becomes ready. However, it turns out that iteration [2, 0] of loop

0 reads elements A[2, 0], A[2 ± 1, 0], and A[2,±1], all of which will later be read

again by loop 0. Therefore, no new iterations of loop 1 become ready after iteration

[2, 0] of loop 0.

Continuing with our example, calculate derivs() (figure 4.8) finds deriv1 =

[3, 0] and deriv2 = [0, 1] for loop 1. Let s1 = [−1, 0], s2 = [0,−1], and s4 = [1,−1].

The subscripts were chosen to correspond to step numbers in tile space. Let C1

from Z
2 × {1, 2, 4} to Z

2 be:

C1(〈[x1, x2], k〉) = sk + x1 · [3, 0] + x2 · [0, 1] .

The function C1 is what the new tiling will use to map from tile space to the

iteration space of loop 1. In general, if the kth step selected for the tile at 0 by

induce tile0() is sk in the iteration space of the new loop, we define

Cn(〈[x1, . . . , xN], k〉) = sk +
N∑

i=1

xiderivi .

58

bool verify(Tiling t’, Loop new_loop, list<OrderingConstraint> oc):

if (size of tile at 0 is incorrect) return false;

generic vector a = [a1, . . . , aN];
/* n is number of loops before we added new_loop to t’. */

int n = (number of loops in t’) - 1;

for i from 0 to n
b[i] = {Ci(〈x, k〉) | l(k) = i ∧ 〈x, k〉 ≺ 〈a, 0〉};

/* b[0..n] now represent the set of nodes that will

execute before the tile at a. b[i] is a subset

of Li’s iteration space. */

Let I be the iteration space of new_loop;

ready = I \ {r | r forbidden by oc if b[0..n] have executed};
if (∃a such that b[n] 6⊆ ready) return false;

int K = number of steps in t’;

for k from 0 to K - 1

i = l(k);
generic vector v = Ci(〈a, k〉);
/* Only verify nodes from new_loop. */

if (i == n ∧ ∃a such that (v ∈ b[i] ∨ v 6∈ ready)) return false;

b[i] = b[i] ∪ {v};
ready = I \ {r | r forbidden by oc if b[0..n] have executed};

return true;

Figure 4.9: Pseudocode for verify(). By generic vector we mean a vector in
Z

N (a1, . . . , aN), i.e., Z
N with N symbolic variables. Returns true if t’ is a legal re-

ordering.

59

4.4.1 Correctness

Have we induced a correct reordering of the program? The purpose of verify() is

to determine whether Cn is actually a bijection and whether the new tiling respects

all ordering constraints. The former is checked in two parts: we check that the

tile size is correct and that p 6= q implies Cn(p) 6= Cn(q). The volume of the

induced tile in the new loop’s iteration space is the number of new steps found

in the first call to induce tile0(). In our example that is three. According to

Observation 4.2.1, that is the correct tile size if and only if it is equal to the volume

of a parallelepiped whose edges are congruent to the derivs. In our example the

derivs are [3, 0] and [0, 1]. The induced tile has the correct size.

Determining whether p 6= q implies Cn(p) 6= Cn(q) and determining whether

ordering constraints are violated occur in a pass through a generic tile, the tile at

[a1, . . . , aN] in tile space. We rely on the Omega library’s ability to represent and

manipulate symbolic variables. See figure 4.9.

4.4.2 Variations

Many possible variations spring to mind, some of which we have implemented.

Restricting the Interleaving of Steps

Normally we allow arbitrary interleaving of the steps belonging to different loops.

However, a parameter setting can force the creation of a tiling where all steps

belonging to L0 come first, followed by all steps belonging to L1, and so on. Such

a tiling is useful for two reasons. First, it roughly mimics what one might get

from a compiler that does tiling followed by loop fusion rather than doing the two

together, allowing us to make some comparisons. Second, sometimes this approach

improves temporal locality. Sometimes it is a small optimization and other times

60

it is a small pessimization.

Reshaping Induced Tiles

After induce tile0() and calculate derivs() succeed, we have an optional pro-

cedure for reshaping the induced tile. See figure 4.11. The primary purpose of this

is to allow comparison of our technique with alternatives that, for example, only

generate tiles of certain shapes. However, as with the restriction on interleaving,

sometimes this approach improves temporal locality. In other words, it could be

legitimate optimization.

If a parameter turns it on (not the default), the reshaping pass constructs S,

a set of points in a parallelepiped with edges congruent to the derivs calculated

by calculate derivs(). We are attempting to induce a tile with the shape of

S and the same derivs. We select |S| + 1 translations of S to investigate further

(figure 4.10), but filter out those that do not lie completely within the ready set.

(The number to investigate is arbitrary. In practice, |S| + 1 works well.) We

eventually repeat a process similar to the original induction with a goal paral-

lelepiped enforced (figure 4.11). If reinduce tile0() succeeds then we do not call

calculate steps() again; instead, we proceed to verify().

In the running example, the induced tile at 0 contains points [−1, 0], [0,−1],

and [1,−1]. Reshaping, if requested, would lead to

choose translations({[−1, 0], [0,−1], [1,−1]}, {[−1, 0], [0, 0], [1, 0]}, 3,

{[x, y] | x < −1 ∨ (x = −1 ∧ y < 1) ∨ (x < 2 ∧ y < 0)})

being called, whose result would be a list containing [0,−1] and [−2, 0]. [0, 0] and

[−1, 0] are not in the result because {[−1, 0], [0, 0], [1, 0]} and {[−2, 0], [−1, 0], [0, 0]}

are not subsets of the ready set. {[−1,−1], [0,−1], [1,−1]} and {[−3, 0], [−2, 0],

61

list<vector> choose_translations(set<vector> a, set<vector> S0,

int count, set<vector> ready):

queue<vector> Q = non-zero vectors in Z
N sorted by taxicab order;

list<vector> result = empty list;

for each element o of Q {

set<vector> c = {r + o | r ∈ S0};
if (a ∩ c 6= ∅) {

Append o to result;

if (length of result is count) goto filter;

}

}

filter:

insert the zero vector at front of result;

for each element o of result {

set<vector> c = {r + o | r ∈ S0};
if (c 6⊆ ready) Remove o from result;

}

return result;

Figure 4.10: Pseudocode for selecting plausible placements of a reshaped tile. The
first two arguments will be the points in the tile at 0 (as induced) and a set of points
in the desired shape, translated to overlap. The count argument will be |a|, though it
could reasonably be set to a different value. Assumes a and S0 overlap. In an actual
implementation, one would prefer to merge the two loops for efficiency.

62

bool reinduce_tile0(Tiling t’, Tiling t, Loop new_loop,

list<OrderingConstraint> oc, set<vector> S):
Let I be the iteration space of new_loop;

Let C be the function in t’ from tile space to iteration spaces;

int o = the first step of t’ that belongs to new_loop;

vector m = the lexicographically least element of S;
/* Make least element of S0 equal to first point induced in I. */

set<vector> S0 = {p + C(〈0, o〉) − m | p ∈ S};
set<vector> induced_points = {C(〈0, k〉) | step k belongs to new loop};
int K = the number of steps in t;

/* Compute the ready set after the tile at 0. */

set<vector> ready =

I \ {r | r forbidden by oc if p � 〈0, K − 1〉 in t have executed};
list<vector> translations =

choose_translations(induced_points, S0, |S|, ready);

if (translations is empty) return false;

int w = get parameter0 "Which translation?";

set<vector> goal = {p + translations[w] | p ∈ S0};
b = I \ goal \ {r | r forbidden by oc if p ≺ 〈0, 0〉 in t have executed};
list<steps> new_steps = empty;

for k from 0 to K - 1

Append step k of t to new_steps;

s = I \ {r | r forbidden by oc if p � 〈0, k〉 in t have executed} \ b;
for every element e of s ∩ goal;

Append e to new_steps;

b = b ∪ {e};

if (goal 6⊆ b) return false;

Replace steps in t’ with new_steps;

return true;

Figure 4.11: Pseudocode for reshaping tiles. Returns whether it succeeds.

63

begin tiling of 2 loops

3 nodes from loop 0 (Sample.ti:5)

derivs: [3, 0] [0, 1]

3 nodes from loop 1 (Sample.ti:8)

derivs: [3, 0] [0, 1]

From Sample.ti:5 do [0, 0]

From Sample.ti:8 do [-3, 0]

From Sample.ti:8 do [-2, 0]

From Sample.ti:8 do [-1, 0]

From Sample.ti:5 do [1, 0]

From Sample.ti:5 do [2, 0]

end tiling

Figure 4.12: Tiling with reshaped induced tile. Some previous systems can only gener-
ate tiles of certain shapes, and reshaping our tiles in a post-processing pass allows us to
mimic them for comparison purposes. Reshaping also may be a legitimate optimization
or pessimization, determined largely by the patterns of data or cache line reuse.

[−1, 0]} are subsets of the ready set. Figure 4.12 shows the tiling after reshaping

if the goal parallelepiped is set to {[−3, 0], [−2, 0], [−1, 0]}.

Unimplemented Variations

We have designed and implemented an algorithm that induces a tiling for loops

L0, . . . , Ln from a tiling for L0, . . . , Ln−1. One disadvantage of this design is that

it steps through many different tilings as it induces tilings over more and more

loops. It seems possible to construct a one pass algorithm that directly constructs

the tiling for L0, . . . , Ln from the tiling for L0 and ordering constraints. Avoiding

the construction of the intermediate tilings would speed compilation significantly,

especially when n is large.

Another possible twist that we have not tried is doing the induction backwards

(or in both directions). That is, instead of tiling L0 first, one could tile Ln first. An

algorithm to induce a tiling for Lm, . . . , Ln from a tiling for Lm+1, . . . , Ln should

64

be fairly easy to devise. That algorithm would generate slightly different tilings

than the algorithm we implemented, but we see no obvious benefit to one over the

other.

65

Chapter 5

Implementation Details

5.1 Titanium/Stoptifu Interface

Stoptifu performs storage optimizations, tiling, and loop fusion in a library separate

from tc. The Stoptifu library can, in theory, be attached to any compiler. Data

is passed in to the library using Stoptifu’s AST representation, which is distinct

from tc’s. After Stoptifu’s analysis and transformation, data is transferred back

to the caller via a tree translation pass. Typically, the caller customizes the tree

translation to generate code that represents the tiled, optimized program in the

caller’s intermediate form.

The Stoptifu library treats the bodies of loops as opaque statements. A list of

ordering constraints must be provided by the caller. If storage optimizations are

requested (§6) then the caller also must provide information about what data are

read and written in each loop iteration.

66

(bridges)

for all i, setup for Li;

if (can use tiling /* the precheck */)

execute tiles ordered lexicographically in tile space;

else {
foreach- (p0 in D0) S0;
...
foreach- (pn−1 in Dn−1) Sn−1;

}
(bridges)

Figure 5.1: Outline of C code output. The setup code computes pointers and incre-
ments for strength-reduced address calculations and computes the number of points in
each Di. By foreach- we simply mean a foreach without the setup code. Each bridge
now appears at the top or bottom.

5.2 Selecting Loops to Tile Together

The loops tiled together by the Stoptifu library must be full domain loops (§3.4.2)

that have the same dimensionality. They must be presented to the library as a

sequence of loops with no intervening code. Rarely does a program appear in that

format, so tc makes a modest effort to reorder code for presentation to Stoptifu.

The first step tc takes is to find pairs of loops that are full domain loops

with the same dimensionality such that all control-flow paths from the first loop

inevitably lead to the second loop. We call the code between the two loops the

bridge. Bridges can contain arbitrary code. We discard pairs for which the bridge

can be entered other than from the end of the first loop.

Pairs are then strung together into longer sequences, if possible. For example,

the pairs 〈L0(bridge)L1〉 and 〈L1(bridge)L2〉 together suggest that L0, L1, and L2

might be fused. A greedy approach is tc’s default, but any legal sequence may be

selected by using the parameter file.

67

Let the loops

foreach (p0 in D0) S0;

...

foreach (pn−1 in Dn−1) Sn−1;

be called L0 through Ln−1. If they are to be tiled together then we will generate

code of the form shown in figure 5.1. If any bridge cannot legally be moved

forwards or backwards to accomodate that pattern then we do not attempt to tile

loops L0, . . . , Ln−1 together.

Though not always necessary, we find it helpful to include a runtime test, the

precheck, that determines whether a tiling should be used. The precheck includes,

at the least, a test that the iteration spaces of the loops are unit-stride rectangles

or a union of same. That particular test is not for correctness but for efficiency.

We also check that each loop’s iteration space contains at least some minimum

number of nodes (default 500). That minimum may be set separately for each

tiling. If the precheck fails at runtime then we fall back on a version of the code

that was not optimized by Stoptifu.

5.3 Disjoint Pairs of Arrays

The ordering constraints we pass to the Stoptifu library are mostly constructed

from array dependence information. (Other constraints come from scalar depen-

dences or from method calls with unknown side-effects.) Some dependences can be

profitably ignored in the sense that they are possible according to static analysis

but at runtime they are present seldom or never. In order to optimize more pro-

grams we can assume that certain arrays are disjoint, i.e., their elements are not

aliased. (Each such assumption can be forbidden by a parameter.) For safety, if

68

we do optimize under one or more such assumptions then a runtime test is added

to the precheck.

An assumption that two arrays a and b do not overlap is only considered if there

are no assignments a = b or b = a and an ordering constraint can be removed by

making the assumption. Static analysis proving a and b are disjoint is unnecessary

if one is willing to bear the cost of the runtime test and the speculative compilation

that may or may not bear fruit.

5.4 Generating Code for Tilings

C code to execute tiles in lexicographic order is created in three major parts: loop

setup, an optimized inner loop for what we hope is the common case, and a catch-

all, alternative inner loop for any nodes in tile space that cannot be handled by

the optimized inner loop. A more refined approach would be to create multiple

special-case inner loops (as is done in PHiPAC, for example). That may have the

highest benefit-to-cost ratio of any item on our wish list.

Figure 5.2 outlines our generated C code for executing tiles in order for the

3-dimensional case (other cases are similar). As in §1, we use k to represent a

step number within a tile and l(k) to mean the number of the loop whose body

is executed in the kth step of a tile. The idea is to determine at the start what

tiles are complete, i.e., what tiles must execute all of their steps. Those tiles are

executed by the optimized inner loop.

At runtime it is important to represent the sets of points in tile space efficiently.

When possible we use a simple rectangle, stored as a minimum and maximum for

each dimension. A simple rectangle is a subset of Z
N that can be expressed as

{(u1, . . . , uN) | (l1 ≤ u1 ≤ h1) ∧ · · · ∧ (lN ≤ uN ≤ hN)} .

69

for k from 0 to K - 1

Ak =
{
x | C(〈x, k〉) ∈ Dl(k)

}
;

/* x ∈ All iff we must visit the tile at x. */

All =
⋃

i Ai;

/* x ∈ Best iff we must do all steps of the tile at x. */

Best =
⋂

i Ai;

All_1_2 = {(x1, x2) | ∃x3 such that (x1, x2, x3) ∈ All};
for every (t1, t2) ∈ All 1 2 {

/* Do a stack of tiles, possibly with holes. */

set todo = {t3 | (t1, t2, t3) ∈ All};
set besttodo = {t3 | (t1, t2, t3) ∈ Best};
int start, end = max(todo);

while (true) {

start = min(todo);

if (start ∈ besttodo) {

int lastbest = max {t3 | {start, . . . , t3} ⊆ besttodo};
for t3 from start to lastbest

do best-case tile at (t1, t2, t3);
if (lastbest == end) break;

todo = todo \ {−∞, . . . , lastbest};
} else {

int lastnotbest = max {t3 | {start, . . . , t3} ⊆ (todo \ besttodo)};
for t3 from start to lastnotbest

do general-case tile at (t1, t2, t3);
if (lastnotbest == end) break;

todo = todo \ {−∞, . . . , lastnotbest};
}

}

}

Figure 5.2: C pseudocode for executing tiles in order for a tile space Z
3×{0, . . . ,K−1}.

if (t ∈ A0) { pl(0) = C(〈t, 0〉); Sl(0); }

if (t ∈ A1) { pl(1) = C(〈t, 1〉); Sl(1); }
...
if (t ∈ AK−1) { pl(K−1) = C(〈t, K − 1〉); Sl(K−1); }

Figure 5.3: C pseudocode for executing the general-case tile at t = (t1, t2, t3). Both
the general-case and best-case tiles are fully unrolled.

70

For example, if Dl(k) is a simple rectangle and the derivs for Ll(k) are axis-aligned

then Ak must be a simple rectangle. Best must be a simple rectangle if all the Ak’s

are. All may be approximated with a simple rectangle (default) or represented

exactly, depending on a parameter setting. In stencil codes, All often turns out

to be the union of nearly-identical simple rectangles.

The type generated for todo (or besttodo) is a range of integers or an ordered

list of disjoint ranges, depending on the type of All (or Best).

Figure 5.3 outlines how a general-case tile is executed. A best-case tile is similar

except that the conditionals are not necessary. An assignment to pl(k) should be

thought of as an update of the pointers created by strength reduction (§3.4.2) in

addition to (or instead of) the update of pl(k). At an assignment to a particular

pl(k) in the best-case tile we can usually optimize those pointer updates because

the difference between the old value of pl(k) and the new value is known at compile

time.

71

Chapter 6

Storage Optimizations

6.1 Introduction

Stoptifu currently performs three storage optimizations: array contraction, delay-

ing writes to oft-written array elements, and reusing values instead of reloading

them. It attempts to apply the three optimizations in that order. Many other

storage optimizations are possible. We also benefit from the C compiler’s opti-

mizations, from hardware prefetching, etc.

Of particular note is our algorithm for array contraction, which is more flexible

and aggressive than the versions found in other compilers. We can contract an

array to any combination of lower-dimensional arrays and scalars, as appropriate.

We also can defer one or more of the safety tests to runtime, thereby allowing

broader application of the transformation.

To enable storage optimizations, tc provides the Stoptifu library with a list

of all possible array reads and writes per loop iteration, all optimizable array

reads, and all optimizable array writes. An optimizable array read is of the form

v = a[R(p)], where p is the iteration point, R is a relation from the iteration

72

B.junk();

foreach (p in D)

B[p] = (4 * A[p] + A[p + [1, 0]] + A[p - [1, 0]] +

A[p + [0, 1]] + A[p - [0, 1]]) / 8;

foreach (q in D)

A[q] = B[q];

B.junk();

Figure 6.1: Example amenable to array contraction.

space to the array index set, |R(p)| = 1 for all values of p, and every iteration of

the loop reads a[R(p)], but no iteration of the loop writes a[R(p)]. Similarly, an

optimizable array write is of the form a[R(p)] = w, where p is the iteration point,

R is a relation from the iteration space to the array index set, |R(p)| = 1 for all

values of p, the write is performed on every iteration of the loop, and the value

written is the same as the value of a[R(p)] just after the end of iteration p.

The library returns a list of changes to the program that do not change its se-

mantics but may improve its performance. The changes may include the allocation

of temporary storage (scalars and arrays), writes and reads to and from said loca-

tions, and elimination of operations thereby made redundant. Temporary scalars

are generally intended to reside in machine registers, but our implementation does

not have that level of control. Allocation of temporary arrays is only necessary if

array contraction is successful.

6.2 Contracting Arrays

6.2.1 Motivation

Arrays used as scratch space can sometimes be eliminated or dramatically reduced

in size. The tiled version of the program in figure 6.1 is about 1.4 times faster

73

0

1

2

3

4

5

tile at 0

Figure 6.2: This figure is similar to figure 4.4, but it indicates the flow of temporary
data via the B array in the source code. The top shows a portion of the loops’ iteration
spaces with tiles outlined. (The first loop’s iteration space is on the left.) The tile at 0
is highlighted. Below is T = Z

2 × {0, 1, 2, 3, 4, 5}, with only the tile at 0 shown. Part
of the correspondence between the three spaces is indicated. The curved arrows from
the left side to the right side indicate the flow of data that can be optimized via array
contraction. In each tile, the first two values written to B (in steps 0 and 3) are consumed
in the very next tile (in steps 2 and 4). They can be stored in registers. The third write
to B is consumed in the next stack of tiles, potentially a long time later. But it can be
replaced with a write to a 1-dimensional compiler-generated temporary array.

74

with array contraction. For programs amenable to it, the running time saved from

tiling with array contraction is frequently more than double the time saved from

tiling alone.

In figure 6.1, the array B is scratch space. The programmer has helpfully invoked

the junk method, which non-deterministically writes to all array elements. In other

words, it does nothing at runtime. It signals the compiler that the contents of B

need not be consistent across calls to B.junk(). Without the trailing call to junk,

the compiler would have to worry about later reads of B. Although interprocedural

liveness analysis is possible, tc does not yet implement it. Even when we do add

liveness analysis, the junk method will remain a useful tool, because sometimes

liveness analysis cannot or will not infer what one wants. The leading call to junk

is less important, as the set of B’s elements read is exactly the set written.

Let the loops in our example be fused and tiled with T being the tiled iteration

space. Each tile in T writes a few elements of B and reads the same number, from

almost (but not exactly) the same places in B.

Consider the iteration with some S ⊂ T completed and S̄ not. Most elements

of B that have been written have also been read, in which case they are now

valueless. Elements of B not yet written are also valueless. The only elements

that matter are the ones written but not yet read, and the number of them is

proportional to the size of the boundary between S and S̄.

The goal of array contraction is to replace scratch arrays with smaller scratch

areas or scalar variables. In the example, optimization roughly halves the amount

of data flowing between the processor and memory by replacing B with compiler-

generated scratch space whose size is approximately the maximum number of live

elements in B. See figure 6.2.

Of course, in a näıve implementation of the code in figure 6.1, the maximum

75

contract_array(X):

int firstWrite = min {i | Li may write to X};
int lastWrite = max {i | Li may write to X};
int firstRead = min {i | Li may read from X};
int lastRead = max {i | Li may read from X};
if (firstRead < firstWrite || lastWrite > lastRead ||

X’s contents may be important after {Li | Li may write to X})
fail;

/* It could be a scratch array. Check every read. */

/* This maps a read site in some step to a write site in

some step separated by a fixed distance in tile space. */

map reader_to_writer;

/* This maps a write site in some step to the distance in

tile space over which the value written is alive. */

map writer_to_maxdist;

for kr from 0 to K − 1 {

for every read site, sr, of an element of X in step kr {

if (∃ a vector v, a step kw, and a write site sw

s.t. ∀x, 〈x + v, kw〉 ≺ 〈x, kr〉 and if 〈x + v, kw〉 executed

then the read at site sr in 〈x, kr〉 must read

the value that was written at site sw in 〈x + v, kw〉) {

reader_to_writer[(kr, sr)] = (v, kw, sw);
if (writer_to_maxdist[(kw , sw)] is not set ||

v ≺ writer_to_maxdist[(kw , sw)])
writer_to_maxdist[(kw , sw)] = v;

} else fail;

}

}

/* Success! */

return reader_to_writer and writer_to_maxdist;

Figure 6.3: Pseudocode for array contraction. By read site we mean a particular
textual instance of ... = X[...]. By write site we mean a particular textual instance
of X[...] = Our implementation assumes X’s contents might be important later
unless it sees a call to X.junk().

76

number of live elements in B is |D|. We must fuse the loops to make the array

contraction sensible.

6.2.2 Algorithm and Implementation

Arrays that may be aliased or may be read or written in unknown places are not

contractable. (Aliased in ways not screened out in the precheck, that is.) All

remaining arrays are considered candidates for contraction. Figure 6.3 shows how

we decide whether it is legal to contract an array. If it is legal to contract an array

then we do, unless overridden by a per-array parameter from the parameter file.

Essentially, we contract an array if we can locate each textual read, and for each

such read we can locate a particular textual write that supplies its value and that

is a fixed distance away in T .

Conceptually, once an array is designated for contraction, each textual write

becomes a write to a separate scratch area, either a scalar or an array. That

scratch area is only written once per tile. (Each textual read has a corresponding

textual write at a corresponding distance in T , so it always reads from only one

such scratch area.) The scalar case applies if the value to be written is consumed

(becomes dead) within at most some fixed number of tiles. If the array being

contracted is 1D then the scalar case is the only case; otherwise the conditions

for contraction would not be satisfied. (Besides, it seems silly to “contract” a 1D

array to another 1D array.)

When the scalar case does not apply, the number of simultaneously live values

generated by one stack of tiles is bounded by the height of the stack. (A particular

textual write occurs statically once per tile, and dynamically it occurs once or not

all.) We use the term stack of writes to refer to the values generated by a particular

textual write over the course of a tile stack’s execution. In the 2D case the number

77

B.junk();

foreach (p in D)

B[p] = (4 * A[p] + A[p + [1, 0]] + A[p - [1, 0]] +

A[p + [0, 1]] + A[p - [0, 1]]) / 8;

foreach (q in D)

A[q] = (B[q] + B[q + [0, 2]]) / 2;

B.junk();

Figure 6.4: A slightly different example amenable to array contraction—a variant of
figure 6.1.

of stacks of writes that are alive at once will be fixed at compiler time; otherwise

the conditions for contraction would not be satisfied.

In 3D or higher, there are two interesting cases again: a fixed number of stacks

of writes alive at once (i.e, when each stack of writes is fully consumed after a fixed

number of subsequent tile stacks), or an arbitrary number. It is just the same thing

over again. For a 3D array, contraction of each textual write is down to scalars,

some fixed number of 1D stacks of writes, or an unknown number of 1D stacks

of writes, which amounts to a 2D structure. (Never a 3D structure, because that

would violate the conditions for contraction.) In general, an N -dimensional array

can contract to any combination of scalars and lower-dimensional arrays. When

discussing an individual write we say we “contract it from N dimensions to M

dimensions.”

Strout et al. [34] analyze storage requirements for an array A when

∃v such that ∀p, A[p − v] must be dead by the time A[p] is written.

The identical analysis applies to array writes that we contract from N dimensions

to N − 1 dimensions, and an analogous analysis applies to the general case. Es-

sentially, the only complication is when v can be expressed as tv ′ for some positive

78

0

1

2

3

4

5

tile at 0

Figure 6.5: Illustration, in the same style as figure 6.2, of Stoptifu’s default tiling of
the code from figure 6.4.

79

integer, t, and v′ ∈ Z
N . Figure 6.4 presents a slight modification of our running

example. A basic tiling of that program illustrates the complication. See figure 6.5.

The array B can still be contracted, but the portion that is contracted to scalars

requires more storage than in the previous example. Generally two values from

tile step 0 and two values from tile step 3 are live at any moment. The logical way

to store four values is in four registers, but there are only two program points that

do the writing.

Applying Strout et al.’s analysis to our framework yields two possible solutions.

First, each array write that is contracted to a scalar can use a circular buffer of t

scalars if at most t values could be simultaneously live. For example, with t = 2,

B[...] = expression;

becomes

temp1 = temp2;

temp2 = expression;

and corresponding reads of B use temp1 or temp2 as appropriate. Alternatively,

one can simply increase the tile size, as is illustrated by figure 6.6.

As a final note, we need to worry about reads of prior values of a contracted

scratch array unless the array is junked, as in our example. If it is not junked,

we add logic to the precheck that fails if any compiler-generated temporary value

might be read before it is written. For example, if array contraction causes step 7

of the tile at x = (x1, x2, x3) to write temp[x3] and step 3 of the tile at x − v to

read temp[x3], where 〈x, 7〉 ≺ 〈x − v, 3〉, then we compute

A3 =
{
x | C(〈x, 3〉) ∈ Dl(3)

}

A7 =
{
x | C(〈x, 7〉) ∈ Dl(7)

}

80

0
1
2
3
4
5
6
7
8
9
10
11

tile at 0

Figure 6.6: Using a bigger tile, temporary data consumed within a given tile stack
always come from the immediately previous tile.

81

foreach (p in D) {

int i = p[1], j = p[2], k = p[3];

c[i, k] += a[i, j] * b[j, k];

}

Figure 6.7: Basic Titanium code for matrix multiplication.

and we require

{x | (x − v) ∈ A3} ⊆ A7 .

That is not onerous since we were going to compute A3 and A7 anyway (figure 5.2).

As always, if the precheck fails at runtime then we use a second version of the

code that is not as heavily optimized. In this case, two alternatives to adding to the

precheck would be to copy potentially necessary values upon entry or to generate

special startup tiles. Deferring part of the legality test to runtime increases the

number of programs that we can optimize.

6.3 Delaying Writes

If the same location is written by every tile in a stack of tiles then we might

benefit by loading that location to a register beforehand, using the register during

the stack of tiles, and writing to the location once afterwards. This optimization is

primarily for linear algebra codes such as matrix multiply (figure 6.7). In matrix

multiply, we would apply this optimization if a stack of tiles in the generated code

touched a fixed number of elements of c: each would be read into a scalar before

the inner loop and written back after the inner loop (figure 6.8). All else being

equal, performance gains can exceed 30%.

Theoretically this optimization could backfire if overused, due to increased

register pressure. It may be wise to add parameters that allow fine control.

82

c0 = c[i, k];

c1 = c[i, k + 1];

c2 = c[i, k + 2];

c3 = c[i, k + 3];

for (j = jlo; j <= jhi; j++) {

c0 += a[i, j] * b[j, k];

c1 += a[i, j] * b[j, k + 1];

c2 += a[i, j] * b[j, k + 2];

c3 += a[i, j] * b[j, k + 3];

}

c[i, k] = c0;

c[i, k + 1] = c1;

c[i, k + 2] = c2;

c[i, k + 3] = c3;

Figure 6.8: Sample stack of tiles for matrix multiplication with delayed writes. There
is no need to write to memory on each iteration.

83

can_read_from_register(optimizable_read O, int k):
/* assume tile space T = Z

N × {0, . . . , K − 1} */

for (dist = 1; dist <= K; dist++) {

int ktry = k − dist;

if (ktry < 0) {

ktry += K;

ρ =

N
︷ ︸︸ ︷

(0, . . . , 0,−1);
} else {

ρ =

N
︷ ︸︸ ︷

(0, . . . , 0);
}

S = the set of optimizable reads and writes in step ktry;

for every P in S {

if (assuming the iteration space is all space,

∀x, step k of the tile at x
executes O to read a datum written or read by P,

an optimizable read or write, executed at step ktry of

the tile at x + ρ)
return (P, dist);

}

if (any statement executed at step ktry of the tile at x + ρ
could write to the location read by O)

fail;

}

fail;

Figure 6.9: Analysis to avoid loading a recently read or written value that has not
changed in the interim. If an appropriate P is found then we can save the value it reads
or writes in some compiler-generated variable, e.g., temp, and change O from v = A[...]

to v = temp.

6.4 Eliding Array Reads

6.4.1 Motivation

In tiled code, many values read from arrays have recently been read or written.

That means the value is likely to be in cache, and the read is inexpensive. However,

we would prefer to omit the read altogether if the value to be read is already in a

84

register. Figure 6.9 shows our analysis to avoid loading a recently read or written

value that has not changed in the interim. For each optimizable array read, we

search up to a full tile backwards to see if the required value was read or written.

6.4.2 Implementation

The compile-time analysis shown reasonably assumes that the iteration space is

infinite. In practice, we only perform this optimization for the loop of consec-

utive best-case tiles in the generated code (§5.4). A unique temporary variable

is generated for each array read in the best-case tile that we choose to elide. A

statement such as v = A[...] becomes v = temp. Just after the read or write

returned by can_read_from_register() we insert an assignment to temp. If

ρ = (0, . . . , 0) then the read of temp follows the appropriate write, and both always

execute because they are in the same complete tile and O and P are optimizable.

If ρ = (0, . . . , 0,−1) then we also insert an extra read, temp = A[...], before the

loop of consecutive best-case tiles. That extra read supplies the first tile in the

best-case stack of tiles; the second tile in the stack gets the value of temp written

in the first tile; and so on.

6.4.3 Register Pressure

For some programs, such as Gauss-Seidel relaxation, it turns out that most values

are used multiple times in quick succession. In such cases, most possible applica-

tions of the transformation that elides array reads should be disregarded! Other-

wise the number of temporaries introduced far exceeds the number of hardware

registers, and performance plummets.

Figures 6.10 and 6.11 show our filtering mechanism. In short, we use a parame-

ter (default 1) that limits the number of simultaneously live temporaries introduced

85

set<elision> filter_array_read_elisions():

int K = size of tile, count = 0;

Let Ω = {0, . . . , K − 1};
for every k ∈ Ω {

for every potential array read elision, e, in step kr

Increment count;

int δ = the distance in steps from the assignment of

the temporary to e;

for every b ∈ Ω ∩ ({kr − δ, . . . , kr} ∪ {K + kr − δ, . . . , K + kr})
Increment step_to_num_live[b];

}

if (count is 0) return the empty set;

int M = max {step_to_num_live[0], ..., step_to_num_live[K − 1]};
int max_live = get parameter1 "Aggressiveness (0 to M)?";

if (max_live >= M) return everything;

set<elision> keep = empty set;

if (max_live > 0) {

map< step number, list<elision> > write_step_to_elisions;

for every kr ∈ Ω {

for every potential array read elision, e, in step kr

int δ = the distance in steps from the assignment of

the temporary to e;

int kw = kr − δ;
if (kw < 0) kw += K;

Add e to write_step_to_elisions[kw];

}

Reset all values in step_to_num_live to 0;

for i from 1 to max_live

/* Greedily select elisions, but don’t allow any element of

step_to_num_live[] to exceed i. */

keep = keep ∪ filter_help(i, write_step_to_elisions,

step_to_num_live);

}

return keep;

Figure 6.10: Throttling register pressure.

86

filter_help(int max_allowable,

map< step number, list<elision> > write_step_to_elisions,

map< step number, int > step_to_num_live):

set<elision> selections = empty set;

top:

int seeking = 0;

queue<step number> Q = empty queue;

while (seeking < max_allowable && length(Q) < K) {

for kw from 0 to K − 1
if (step_to_num_live[kw] == seeking)

append kw to Q;

Increment seeking;

}

/* If y is early in Q and z is late in Q then

step_to_num_live[y] <= step_to_num_live[z]. */

while (Q is not empty)

take kw from Q;

for each u in write_step_to_elisions[kw]

if (suitable(u, kw, max_allowable, step_to_num_live)) {

Add u to selections;

goto top;

}

return selections;

bool suitable(u, kw, max_allowable, step_to_num_live):

int kr = the step number of the read corresponding to u;

int δ = kr - kw;

if (δ < 0) δ += K;

for every b ∈ Ω ∩ ({kr − δ, . . . , kr} ∪ {K + kr − δ, . . . , K + kr})
if (step_to_num_live[b] + 1 > max_allowable) return false;

for every b ∈ Ω ∩ ({kr − δ, . . . , kr} ∪ {K + kr − δ, . . . , K + kr})
Increment step_to_num_live[b];

return true;

Figure 6.11: Helpers for filtering routine presented in the previous figure.

87

by this optimization. The performance of generated code when the parameter is

chosen well is usually about 10–20% better than the performance when this opti-

mization is disabled.

6.5 Conclusion

Storage optimizations are necessary for good performance. Tiling alone is not

sufficient. Tilings chosen based on data dependences naturally tend to join the

consumer(s) of a temporary array and the producer. Then, our aggressive and

flexible array contraction algorithm might be able to remove or shrink the tempo-

rary array, compounding the gains of tiling and loop fusion.

However, storage optimizations also may backfire if we overload the faster levels

of the memory hierarchy. A search of the parameter space is an excellent way to find

the best performance, especially when generating C code rather than assembler.

88

Chapter 7

Parameter Selection

Selecting parameters such as tile sizes is difficult. Modern hardware is so complex

that modelling it properly is nearly impossible.

Our method for parameter search is based on simulated annealing. The typi-

cal formulation of simulated annealing makes an analogy between minimizing the

energy of a physical system and minimizing some function, f(x). (In our case x

is a set of parameters and choice of compilers, and f(x) is a user-defined energy

function.) An initial x and an initial temperature, T , are chosen. Then, at each

step, x is randomly perturbed to x′ and the new x′ is accepted with probability

min(1, e(f(x)−f(x′))/kT), where k is a constant. Every so often the temperature is

decreased, and eventually, perhaps after some fixed number of steps, the process

halts. There are many variants.

Our approach is to search with a predetermined stopping time. We let the

temperature be 1 − u, where u is the fraction of time used so far. The time to

perform some calculation is a typical choice of energy function. By default we scale

the temperature by a moving average, κ̄, of the positive values of f(x′) − f(x).

89

param_search(list<method> R, p0, α, β, g, ...):

filename ex = create an executable file from initial parameters;

float τ̄ = τacc = time taken to do initial run of tc;

parameter_vector x = g(output parameter file from tc);

float e = get_energy(ex), κ̄ = -999;

if (e is a NaN) fail;

while (some time is left) {

rule r = a randomly selected rule for perturbing parameters;

parameter_vector x′ = x perturbed according to rule r;

if (x is not different from x′) action = "misfire";

else {

float ξ = get_time_limit(τ̄ , τacc);

run tc with parameters x′ and time limit of ξ;
τ̄ = (1 - β) * τ̄ + β * time taken to do that run of tc;

if (compile failed) action = "compiler failure";

else if (tc tiled at least one loop in each method in R) {

ex = create an executable from C code output by tc;

e′ = get_energy(ex);

if (e′ is a NaN) action = "runtime failure";

else {

if (e′ > e)
κ̄ = (κ̄ < 0) ? (e′ - e) : ((1 - α) * κ̄ + α * (e′ - e));

action = accept(e, e′, κ̄) ? "accept" : "decline";

}

} else action = "reject";

}

Depending on action, adjust weight for rule r;

if (action is "accept") {

e = e′;
x = g(output parameter file from latest run of tc);

τacc = time taken to do latest run of tc;

}

}

bool accept(e, e′, κ̄):
if (e′ < e) return true;

float u = (time used) / (time used plus time left);

return true with probability p0
(e′−e)/((1−u)κ̄);

Figure 7.1: Pseudocode for simulated annealing to select parameters. Output param-
eter files are filtered by g, a user-specified function. get energy(), not shown, passes
the name of an executable file to a user-specified shell script. α and β default to 0.1; p0

to 0.25.

90

Rule Description
set param χ v set a parameter matching χ to v
set param all χ v set all parameters matching χ to v
remove param χ remove a parameter matching χ from

the set of parameters to be specified
toggle param χ toggle a parameter matching χ
increase param χ increase a parameter matching χ by 1
increase param χ n increase a parameter matching χ by n
increase param χ l h increase a parameter matching χ by

a random element of {l, . . . , h}
multiple n recursively fire n rules
modify param by multiplication χ n multiply a parameter matching χ by n
change any randomly select any parameter and dou-

ble it, halve it, toggle it, or add some
element of {−5, . . . , 5}

set compiler n use compiler number n

Table 7.1: Format for rules to perturb parameters: χ represents a regular expres-
sion, and other variables represent numbers. The only way to change compilers is with
set compiler. Other than the choice of compiler, parameters are assumed to be a set
of string/value pairs.

91

The probability of accepting x′ is

p0
(f(x′)−f(x))/((1−u)κ̄) ,

where p0 defaults to 1
4
. So, the probability of accepting a move in parameter space

that is about as bad as other recent potential bad moves is p0

1

1−u . Figure 7.1 is

pseudocode for the whole process. The output of a parameter search is a lengthy

and detailed log. Often, in practice, the parameters that resulted in the best energy

are the only part of the log not discarded.

A set of rules for perturbing parameters must be provided in the format shown

in table 7.1. The user gives initial weights to each rule and controls how a rule’s

weight changes when its invocation leads to a particular action. (By action we

mean “accept”, “decline,” and so on, as in figure 7.1.)

Parameters are typed, so one of the ways a rule can misfire is by yielding

an invalid value. For example, change any might try to add 5 to a parameter

whose valid range is 0 to 3. However, despite the parameters’ types, rules do

apply as broadly as possible. For example, modify param by multiplication

does rounding after the multiplication, and toggle param works on all parameters

(not just booleans) by mapping 0 to 1 and any non-zero to 0.

Each invocation of tc during a parameter searching run has a time limit. This

is to avoid overrunning the predetermined stopping time and to allow users some

control over the minimum number parameter vectors explored. Let rand() be

a function that returns a random number between 0 and 1. A command-line

argument can specify 〈z, x, a, b〉 tuples, each of which yields a cap of

max {zτacc, x, (au + b)/rand()} .

92

Another command-line argument specifies 〈z, y, c, d〉 tuples, each of which yields a

cap of

max {zτacc, yτ̄ , (cu + d)τ̄ /rand()} .

In both cases, caps are expressed in seconds. A fresh set of caps is computed each

time tc is to be invoked. If tc takes longer than the smallest cap, or runs until

the predetermined stopping time, then it is halted.

93

Chapter 8

Results

8.1 Introduction

The Titanium programs that we tested on uniprocessors are ca, s3, rb9, rbrb9,

and mg. The first two (§8.2) are 1D stencil codes, one traditional and one slightly

less so. The next two (§8.3) are based on Gauss-Seidel Red-Black (GSRB) in

a C++/FORTRAN implementation of Anderson’s Method of Local Corrections

(MLC) by Phil Colella and Paul N. Hilfinger. Their implementation performs two

red-black passes in a row in several places, and rbrb9 is just that. (According to

Sellappa and Chatterjee [33], related codes do as many as eight in a row.) The red-

black-red-black pattern is written as eight loops because the code uses a 9-point

stencil in 2D. We merge all eight loops into one. For purposes of comparison, rb9

is the same but performs only one red and one black pass (four loops). A V-cycle

of 3D multigrid, based on Titanium code for Adaptive Mesh Refinement ([32]) by

Luigi Semenzato, is our largest benchmark, mg. We present results for mg in §8.4.

Most testing was done on two PCs running Linux. One is a 866MHz Intel

Pentium III Coppermine, and one is a 1.4GHz AMD Athlon Thunderbird. The

94

/* x is the input and the output; y and z are temporaries. */

/* t is a fixed table of M elements. */

foreach (p in d)

y[p] = t[(a * x[p - [2]] + b * x[p - [1]] + c * x[p] +

d * x[p + [1]] + e * x[p + [2]]) % M];

foreach (p in d)

z[p] = t[(a * y[p - [2]] + b * y[p - [1]] + c * y[p] +

d * y[p + [1]] + e * y[p + [2]]) % M];

foreach (p in d)

x[p] = t[(a * z[p - [2]] + b * z[p - [1]] + c * z[p] +

d * z[p + [1]] + e * z[p + [2]]) % M];

Figure 8.1: Pseudocode for ca.

latter uses both gcc and icc (Intel’s C compiler) while the former uses gcc only. We

also present a few results on Sun UltraSPARCs using gcc. (tc generates C code.)

All problem sizes were chosen to fit comfortably in main memory but not in cache.

8.2 1D Benchmarks

We begin with two programs that operate on 1-dimensional arrays. Red-black

relaxation is useful in any number of dimensions; s3 applies a 3-point stencil first

to the red points of an array of doubles, and then to the black points. Only one

array is necessary, and half its values are updated by each of the two loops. A

program to simulate a cellular automaton is our other 1-dimensional benchmark,

ca. Its basic operation is to calculate an array index via a 5-element integer dot

product modulo M. Pseudocode is shown in figure 8.1. Stoptifu can fuse the three

loops and contract the temporary arrays y and z to scalars.

Results for s3 are presented in table 8.1. All running times are presented

to three significant figures, and are the minimum wall-clock time of five runs.

Millions of double-precision floating-point operations per second (MFLOPS) are

95

Pentium III UltraSPARC
Effort runtime (s) MFLOPS runtime (s) MFLOPS
baseline 0.790 50.6 1.84 21.7
0h 0.504 79.4 2.36 16.9
1h 0.413 96.9 1.70 23.5
2h 0.394 102 1.67 24.0
4h 0.329 122 1.59 25.2
8h 0.324 123 1.49 26.8

Table 8.1: Results for s3 on 866MHz Pentium III and on 167MHz UltraSPARC. Each
result represents an independent search that started from scratch, so it is possible for
an unlucky long search to underperform a lucky short search. The baseline is compiling
without Stoptifu but with all other optimizations. The 0h line shows running times
after compiling with Stoptifu’s default parameters. Longer searches yielded no further
improvement.

also presented to three significant figures. The baseline results, by which we mean

results achieved without Stoptifu but with all other optimizations, are 0.790s for

the 866MHz Pentium III and 1.84s for the 167MHz UltraSPARC. The results are

as expected, except that, on the UltraSPARC, the default Stoptifu parameters led

to a time worse than the baseline. Our system improves the runtime of s3 by a

factor of 2.44 on the Pentium machine and 1.23 on the Sun. Parameter searches

longer than eight hours did not yield any further improvement.

The benefits of decreasing memory traffic are more pronounced on the Pentium

because its processor speed to memory speed ratio is higher. The Sun’s CPU is

clocked only twice as fast as its memory bus; the Pentium III’s CPU is clocked 6.5

times as fast as its memory bus. (The Sun is several years older.) The Sun also

searches parameter space relatively slowly because equivalent compilations take

longer.

Results for ca are presented in table 8.2. Without Stoptifu but with all other

optimizations, the baseline times are 7.66s for the 167MHz UltraSPARC and 2.09s

for the 866MHz Pentium III. The Pentium data are for a problem size five times

96

Pentium III UltraSPARC
Effort runtime (s) op/µs runtime (s) op/µs
baseline 2.09 158 7.66 8.62
0h 1.41 234 6.86 9.62
1h 1.08 306 6.79 9.72
2h 1.04 317 6.81 9.69
4h 1.02 324 6.78 9.73
8h 0.983 336 6.49 10.2

Table 8.2: Results for ca on 866MHz Pentium III and on 167MHz UltraSPARC. The
0h line shows running times after compiling with Stoptifu’s default parameters. Longer
searches yielded no further improvement.

as large. Once again, a two hour search on the Pentium doubles the baseline

performance. Improvement on the UltraSPARC is noticeable but less spectacular.

8.3 Gauss-Seidel Relaxation in 2D

Table 8.3 presents the results for rb9. All results for rb9 come from the minimum

wall-clock time of five runs, presented to three significant figures. Running with

Stoptifu’s default parameters, a time of 1.92 seconds was achieved. The baseline

time is 3.38 seconds (all of tc’s optimizations except Stoptifu). The primary results

here are:

• tc with Stoptifu’s defaults yields code 1.76 times faster than the baseline.

• tc with better Stoptifu parameters (rb9s̄i55) yields code another 1.52

times faster, i.e., 2.68 times faster than the baseline.

• The best we were able to do with array contraction enabled was 1.25 times

faster than the best we were able to do without it.

• Allowing or disallowing any tile shape matters little (a few percent).

97

Allow Coarse Array Runtime after
any inter- con- search with

Name shape leaving traction effort gcc (s) MFLOPS
baseline N/A N/A N/A N/A 3.38 49.7
no search yes yes yes 0h 1.92 87.5
rb9siā72 yes yes no 72h 1.69 99.4
rb9s̄iā72 no yes no 72h 1.71 98.2
rb9sı̄ā72 yes no no 72h 1.60 105
rb9s̄ı̄ā72 no no no 72h 1.66 101
rb9sia72 yes yes yes 72h 1.32 127
rb9s̄ia72 no yes yes 72h 1.37 123
rb9sı̄a72 yes no yes 72h 1.34 125
rb9s̄ı̄a72 no no yes 72h 1.37 123
rb9si55 yes yes both 55h 1.28 131
rb9s̄i55 no yes both 55h 1.26 133
rb9sı̄55 yes no both 55h 1.34 125
rb9s̄ı̄55 no no both 55h 1.38 122

Table 8.3: Results for rb9 on 866MHz Pentium III. See §4.4.2 for an explanation of
“allow any shape” and “coarse interleaving.” Array contraction was free to be enabled
or disabled during the last four searches, but all of them settled on parameters that use
it.

• Allowing or disallowing fine interleaving of nodes in a tile matters little (a

few percent).

Table 8.4 presents the results for rbrb9. All results for rbrb9 come from the

minimum wall-clock time of five runs, presented to three significant figures. During

searches the backend compiler was free to switch between gcc and icc, but at the

end of each run we tried both, using that search’s best reported tc parameters.

The baseline times, without Stoptifu, are 3.73 seconds (gcc) and 3.70 seconds (icc).

With Stoptifu and its default parameters, that improves to 2.48 seconds (gcc) and

2.36 seconds (icc). Nine of ten results favor icc, so here we summarize just the

highlights of the icc results:

• tc with Stoptifu’s defaults yields code 1.57 times faster than the baseline.

98

Allow Coarse Array Runtime after
any inter- con- search: with best

Name shape leaving traction effort gcc icc MFLOPS
baseline N/A N/A N/A N/A 3.73 3.70 90.8
no search yes yes yes 0h 2.48 2.36 142
rbrb9sia55 yes yes yes 55h 1.56 1.48 227
rbrb9s̄ia55 no yes yes 55h 1.59 1.44 233
rbrb9sı̄a55 yes no yes 55h 1.71 1.45 232
rbrb9s̄ı̄a55 no no yes 55h 1.68 1.61 209
rbrb9siā55 yes yes no 55h 1.81 1.73 194
rbrb9s̄iā55 no yes no 55h 1.49 1.45 232
rbrb9sı̄ā55 yes no no 55h 1.83 3.21 184
rbrb9s̄ı̄ā55 no no no 55h 1.71 1.68 200
rbrb9a120 both both yes 120h 1.42 1.34 251
rbrb9ā120 both both no 120h 1.49 1.44 233
rbrb9120 both both both 120h 1.30 1.22 275

Table 8.4: Results for rbrb9 on 1.4GHz Athlon. For all ten searches, the C compiler
used was free to switch between gcc and icc. At the end, whatever parameters were
selected were used with each C compiler, for comparison purposes.

99

• tc with better Stoptifu parameters (rbrb9120) yields code another 1.93

times faster, i.e., 3.03 times faster than the baseline.

• The best we were able to do with array contraction enabled was 1.18 times

faster than the best we were able to do without it.

• Allowing or disallowing any tile shape matters little (a few percent).

• Allowing or disallowing fine interleaving of nodes in a tile matters little (a

few percent).

8.4 Multigrid

There are numerous variations on multigrid (e.g., Briggs [8]), and many of them

are amenable to our system of optimization. Multigrid algorithms that spend the

majority of their time performing GSRB or other linear relaxation methods are

common. Sellappa and Chatterjee [33] show a multigrid program that spends 80%

or more of its running time doing GSRB. Using our results from the previous

section, we would improve the performance of a program that spends 80% of its

time in GSRB by more than a factor of two.

The program mg is interesting because it contains several different loops that

have different opportunities for optimization. The majority of the time is spent

on GSRB with a 7-point stencil in 3D, for which no temporary storage is needed.

In fact, a näıve compiler does relatively well on this code. But loop fusion, tiling,

and storage optimizations still improve mgin interesting ways.

We can contract only one array in mg. A residual is calculated and immedi-

ately used to correct the right-hand side of the next coarser level. To expose the

temporary residual to contraction we manually inlined part of the recursive call

100

ratio to
Effort runtime (s) MFLOPS baseline
baseline 2.72 100 1
0h 2.62 104 1.04
120h 2.17 125 1.25
120h+8h 2.01 135 1.35

Table 8.5: Results for mg.

in the V-cycle. As expected, our heuristic for inducing the fusion of loops (§4.4)

combines “coarse” and “fine” loops in the necessary 1:8 ratio to allow contraction.

Even better, it is able to find one set of three loops that it combines in a 1:8:64

ratio.

While not as spectacular as some of the other results, both array contraction

and parameter search were necessary to do that well. The best results were ob-

tained by doing a 120 hour search that was unconstrained, then manually profiling

the code and adding a further 8 hour search that only modified parameters for the

most important Titanium method in the source code. The latter search used the

best result from the 120 hour search as its initial position in parameter space.

8.5 Discussion

The Stoptifu library is capable of merging any number of loops by the methods

described in §4. Furthermore, by using an algorithm that is driven by data de-

pendences, the loops will usually be merged in a way that increases both temporal

locality and the opportunity for storage optimizations such as array contraction.

Stoptifu allows the contraction of an array to scalar(s), to lower-dimensional ar-

ray(s), or to both, as necessary. The combination of these properties makes our

compiler’s output resemble the state-of-the-art in hand-optimization of multigrid

101

algorithms. No other compiler can do as well.

The ability to automatically search a space of compiler parameters is also crucial

to our performance results. The difference between good parameters and indifferent

ones often makes a 50% difference in the performance of generated code.

Interestly, the best result obtained with coarse interleaving of nodes from dif-

ferent loops roughly equalled the best result obtained with fine interleaving. That

is somewhat surprising because toggling that one decision in any particular pa-

rameter vector frequently has a noticeable effect. The same is true of allowing any

tile shape. Overall, it appears that having those options available is worthwhile.

There certainly exist local performance maxima in parameter space that require

coarse interleaving, or that require fine interleaving. Similarly, there exist local

performance maxima in parameter space that require allowing any tile shape, or

that require disabling that option.

Finally, it is interesting to note the drawbacks of a parameter search that

constrains array contraction to be perpetually enabled or disabled. In the latter

case the performance boost of array contraction is not realized, while in the former

case compile times are higher, so less of the parameter space is explored. (The

same pitfall can apply to any beneficial transformation that increases compile

time.) This explains how, for example, rb9s̄i55 found better parameters than

either of two more CPU-intensive competitors, rb9s̄ia72 and rb9s̄iā72.

102

Chapter 9

Parallel Execution

9.1 Introduction

Given a tiling, it is easy to reason about the ordering constraints among tiles.

Then the tiles can be assigned to different processes for parallel execution, or the

tile space can be reordered (yielding a hierarchical tiling), or both.

Hierarchical tiling is future work for us, but we have implemented a limited form

of automatic parallelization. In the context of Titanium, an explicitly parallel

language, this is slightly odd. However, we felt it important to show how to

extend our sequential optimizations to the ever more important realm of parallel

computing. This chapter is essentially a proof-of-concept.

9.2 Implementation

Most stencil codes cannot be trivially parallelized: a pipeline or wavefront scheme

must be employed. The wavefront scheme divides tile space with a set of parallel

hyperplanes, and does each slice of computation between adjacent planes in paral-

lel. In fused and tiled GSRB, for example, it starts at one corner of the bounding

103

box of the runtime tile space and proceeds to the opposite corner. Global barriers

periodically synchronize all processes so that ordering constraints between tiles

are not violated. Initially only one process is busy, but after a few barriers all are

usually busy (assuming a large, rectangular tile space). The pipeline scheme is

similar but it uses point-to-point communication to synchronize processes working

on adjacent stacks of tiles. The pipeline scheme is generally preferable (according

to Lim and Lam [28]), so we have not yet implemented the wavefront scheme.

We have implemented basic automatic parallelization for shared-memory ma-

chines at the level of a tile space. A tile space to be executed in parallel is divided

into stacks of tiles as usual, but the stacks are assigned cyclically to processes. For

simplicity and to prevent deadlocks, each process executes all its tiles in standard

order. Ordering constraints between different stacks, if any, are enforced with

point-to-point communication. This amounts to the pipeline scheme except, of

course, communication is not necessary in the embarrassingly parallel case.

To allow the programmer to indicate loops to be parallelized, we introduce a

new syntax to Titanium: foreach (p in D) parallel B, where B is a block of

zero or more statements. (This syntax was chosen to avoid adding a keyword. The

syntactic position of parallel does not require that it be a keyword.) It is an

error if one process arrives at a particular textual instance of said construct but

another does not, and it is also an error if the processes do not agree on the value

of D. In Titanium jargon, D must be single-valued, and the construct has global

effects (Aiken and Gay [1]).

Inside the Stoptifu library, tiling proceeds as usual except that we never tile

together parallel and non-parallel loops. If one or more parallel loops have

been mapped to a tile space, T = Z
N × {0, . . . , K − 1}, we apply the algorithm of

figure 9.1 to determine how to proceed. If parallelize() succeeds then it returns

104

set<vector> parallelize(vector z, list<OrderingConstraint> oc, ...):

Let s(k) = {x | tile at z + x must precede 〈z, k〉 according to oc};
set<vector> required =

⋃K−1
k=0 s(k);

if (iteration is 1D and required is non-empty) fail;

/* required may be infinite. Discard all but the

last element of each stack of tiles. */

Let same_stack = {(0, . . . , 0, 0), (0, . . . , 0,±1), (0, . . . , 0,±2), . . .};
subsumed = {q | ∃p ∈ required ∧ q ≺ p ∧ (q − p) ∈ same stack};
required = required \ subsumed;
if (required is infinite) fail;

/* The elements of required may be viewed as dependence vectors.

At runtime, the union of partial tile stacks ending at each

element are a sufficient condition for the tile at z to execute.

Do those conditions suffice for a generic tile at x as well? */

Let f(x) =
⋃

r≥0 {x + p − (0, . . . , 0, r) | p ∈ required};
Let Λ = {(a, b) | an ordering constraint in oc requires a ≺ b};
if (∃x∃y such that y 6∈ f(x) ∧ (y, x) ∈ Λ) fail;

return required;

Figure 9.1: Pseudocode for computing dependences in tile space relevant to automatic
parallelization. We use z = 0, and we filter the ordering constraints because they should
not contain constraints within a stack of tiles.

105

a list of dependence vectors in Z
N . If the list is empty then no synchronization

is necessary. Otherwise, at runtime, a spin lock before each tile prevents it from

prematurely executing.

Once proper synchronization is enforced, the only other necessary change is to

array contraction. The number of simultaneously live values in a contracted array

depends on whether multiple processes are working in parallel. Arrays values

contracted to scalars cannot be live outside of a tile or stack of tiles and are

therefore unaffected. Values in contracted arrays that would (in the sequential

case) not be stored in scalars need special treatment because those data are moving

from one stack of tiles to another. We simply assume that all stacks of tiles might

be simultaneously in progress. Separate storage is therefore allocated for each

stack. As a result, array contraction in automatically parallelized codes does not

reduce the amount of temporary storage quite as much. This effect is mitigated

by data reuse within a tile stack.

9.3 Results

Parallel results are encouraging. The running time for a parallelized loop run on

one processor can be within 1% of the same loop without parallelization. Thus,

we know that the overhead imposed by memory fences is minor. In the embar-

rassingly parallel case, we acheived speedups up to 3.9 on 4 processors (data not

shown). Data for six pipeline-parallel GSRB codes are shown in table 9.1. We did

not run the parameter search script. We simply present results from six different

tile shapes. Two programs are the same as from the previous chapter, but with the

parallel directive inserted. A third is the same as rb9, but with only a 5-point

stencil. And the last three programs (rbrb9h, rb9h, and rb5h) are the same as

106

Tile time on time on time on
Program shape 1 proc (s) 2 procs (s) 4 procs (s)
rb5 1 × 20 1.678 2.029 1.547
rb5 2 × 10 1.756 1.501 1.026
rb5 4 × 5 1.75 1.506 1.011
rb5 5 × 4 1.782 1.461 .963
rb5 10 × 2 1.767 1.454 .936
rb5 20 × 1 1.822 1.337 .901
rb9 1 × 20 3.658 3.202 3.18
rb9 2 × 10 2.971 3.122 2.403
rb9 4 × 5 2.675 2.306 1.7
rb9 5 × 4 2.631 2.125 1.576
rb9 10 × 2 2.554 1.793 1.285
rb9 20 × 1 2.384 1.592 1.031
rbrb9 1 × 20 13.581 9.819 8.043
rbrb9 2 × 10 9.889 6.717 4.655
rbrb9 4 × 5 7.385 4.828 3.069
rbrb9 5 × 4 6.904 4.508 2.783
rbrb9 10 × 2 5.955 3.823 2.249
rbrb9 20 × 1 5.822 3.833 2.142
rb5h 1 × 20 7.721 5.157 2.789
rb5h 2 × 10 7.801 4.829 2.555
rb5h 4 × 5 7.856 4.627 2.416
rb5h 5 × 4 7.797 4.825 2.553
rb5h 10 × 2 8 4.782 2.491
rb5h 20 × 1 7.948 4.404 2.273
rb9h 1 × 20 9.991 7.041 4.54
rb9h 2 × 10 9.418 5.552 2.949
rb9h 4 × 5 9.48 5.77 3.174
rb9h 5 × 4 9.42 5.553 2.963
rb9h 10 × 2 9.415 5.534 2.958
rb9h 20 × 1 9.255 5.223 2.715
rbrb9h 1 × 20 25.916 16.105 10.361
rbrb9h 2 × 10 22.052 13.028 7.373
rbrb9h 4 × 5 19.531 11.175 6.021
rbrb9h 5 × 4 18.97 11.051 5.888
rbrb9h 10 × 2 17.978 9.818 5.153
rbrb9h 20 × 1 17.741 10.217 5.291

Table 9.1: Parallel results for a 4-way 700MHz Pentium III SMP. Results are wall-clock
time, to the millisecond. These are the best times from five runs. The wide tiles, such
as 20x1, require less overhead and less communication.

107

the first three, but with additional arithmetic operations at each stencil point. In

some cases the speedups are below three on four processors, but that just indi-

cates a high communication-to-computation ratio, not anything wrong with our

implementation. In the best case the speedups are close to optimal, particularly

when arithmetic per memory access is high. We confirmed that synchronization

was not the problem by manually removing synchronization primitives: perfor-

mance changed only a few percent (data not shown). Adding more arithmetic per

memory operation, on the other hand, improved the speedup quite noticeably.

108

Chapter 10

Conclusion

10.1 Future Work

Adding more optimizing transformations is the single most important improve-

ment to make. In particular, we would like to allow multiple special-case tiles as

mentioned in §5.4. It might also be important to generate special cases for com-

mon array layouts (e.g., unit-strided row-major order) to offset the generality of

Titanium’s strided, multidimensional arrays.

Improving the speed and ease-of-use of parameter search is also important. In

a few years we hope that a combination of improved software and Moore’s Law

will make multi-day searches be the exception rather than the rule.

10.2 Highlights

We have presented a system that combines new and old techniques for compilation

and parameter search. This dissertation is a step towards the goal of automatically

creating highly-tuned scientific programs directly from source code written in a

high-level programming language.

109

For now, the programmers we have in mind are willing to spend some time tun-

ing their code and their compiler parameters. Given that, and the difficulty in stat-

ically selecting parameters such as tile sizes, it makes sense to provide automatic

parameter searching alongside the compiler. Furthermore, including automatic

parameter searching logically leads one to include more aggressive and speculative

optimizing transformations in the compiler. Our philosophy is to optimize aggres-

sively but to expose the compiler’s decisions to external control. Since we expect

to generate numerous executables during the tuning process, optimizations that

may pay off are relatively more important.

One consequence of our philosophy is that deciding what optimizations to use

should be partially deferred to runtime. If an optimization may be safe or may

be beneficial, in some cases we generate multiple versions of a section of source

code and decide which version to use at runtime. By deferring decisions to runtime

we can optimize more programs because we are not as limited by the quality or

quantity of static compiler analyses.

Some code bloat is common to all tiling transformations, and our aggressive

stance does nothing to discourage it. We value speed too highly to be deterred

by a few kilobytes of additional machine code. Our generated code displays all

the typical benefits of tiling, including decreases in memory usage, cache usage,

cache misses, and instructions executed. Running time is sometimes two or more

times faster than with a basic optimizing compiler. Sequential running time for

multigrid should also be at least 10% faster than competing approaches due to our

superior array contraction and our willingness to spend a few CPU days searching

for a good set of parameters.

110

Bibliography

[1] A. Aiken and D. Gay. Barrier Inference. In Conference Record of POPL’98:
The 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 342–354, San Diego, CA, 1998.

[2] Christopher R. Anderson. An Implementation of the Fast Multipole Method
Without Multipoles. UCLA Report CAM 90-14, Dept. of Mathematics, UCLA,
Los Angeles, CA, July 1990.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Tools, and Tech-
niques. Addison-Wesley, 1986.

[4] D. Bacon, S. Graham, and O. Sharp. Compiler transformations for high-
performance computing. Computing Surveys, 26(4):345–420, December 1994.

[5] U. Banerjee. Unimodular transformations of double loops. In Proc. of the 3rd
Workshop on Programming Languages and Compilers for Parallel Computing,
pages 192–219, Irvine, CA, 1990.

[6] BeBOP. http://www.cs.berkeley.edu/~richie/bebop/.

[7] J. Bilmes et al. Optimizing matrix multiply using PHiPAC: A portable, high-
performance, ANSI C coding methodology. In Proc. ICS’97, pages 340–347,
1997.

[8] W. L. Briggs. A Multigrid Tutorial. SIAM, 1987.

[9] Doug Burger, James R. Goodman, and Alain Kägi. Quantifying memory
bandwidth limitations of current and future microprocessors. In Proceedings
of the 23rd International Symposium on Computer Architecture, 1996.

[10] Larry Carter, Jeanne Ferrante, Susan Flynn Hummel, Bowen Alpern, Kang-
Su Gatlin. Hierarchical Tiling: A Methodology for High Performance. UCSD
Technical Report CS96-508, November 1996.

[11] C. C. Douglas et al. Maximizing Cache Memory Usage for Multigrid Algo-
rithms. In Z. Chen, R. E. Ewing and Z.-C. Shi, editors, Multiphase Flows and
Transport in Porous Media: State of the Art, Springer-Verlag, Lecture Notes
in Physics, Berlin, 2000.

111

[12] FFTW. http://www.fftw.org/.

[13] D. Gay and A. Aiken. Memory Management with Explicit Regions. ACM
SIGPLAN ’98 Conference on Programming Language Design and Implemen-
tation, Montreal, Canada, 1998.

[14] P. N. Hilfinger et al. Titanium Language Reference Manual. Technical Report
CSD-01-1163, Computer Science Division, University of California, Berkeley,
2001.

[15] Karin Högstedt, Larry Carter, and Jeanne Ferrante. Determining the Idle
Time of a Tiling. In ACM SIGPLAN-SIGACT Symposium on the Principles
of Programming Languages, January 1997.

[16] S. Flynn Hummel, I. Banicescu, C. Wang, and J. Wein. Load Balancing and
Data Locality via Fractiling: An Experimental Study. In Boleslaw K. Szyman-
ski and Balaram Sinharoy, editors, Proc. Third Workshop on Languages, Com-
pilers, and Run-Time Systems for Scalable Computers, pages 85–89. Kluwer
Academic Publishers, Boston, MA, 1995.

[17] Eun-Jin Im. Optimizing the Performance of Sparse Matrix-Vector Multiplica-
tion. Ph.D. thesis, University of California, Berkeley, 2000.

[18] Eun-Jin Im and Katherine Yelick. Optimizing Sparse Matrix Computations
for Register Reuse in SPARSITY. International Conference on Computational
Science, 2001.

[19] Wayne Anthony Kelly. Optimization Within a Unified Transformation Frame-
work. Ph.D. thesis, University of Maryland, 1996.

[20] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman,
and David Wonnacott. The Omega Library interface guide. Technical Report
CS-TR-3445, Dept. of Computer Science, University of Maryland, College
Park, March 1995.

[21] T. Kisuki, P. M. W. Knijnenburg, K. Gallivan, and M. F. P. O’Boyle. The
Effect of Cache Models on Iterative Compilation for Combined Tiling and
Unrolling. In Proc. FDDO-3, pages 31-40, 2000.

[22] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle. Combined Selection of
Tile Sizes and Unroll Factors Using Iterative Compilation. Technical Report
2000-07, LIACS, Leiden University, 2000.

[23] Induprakas Kodukula, Nawaaz Ahmed, and Keshav Pingali. Data-centric
Multi-level Blocking. In SIGPLAN 1997 conference on Programming Lan-
guage Design and Implementation, June 1997.

112

[24] Arvind Krishnamurthy. Compiler Analyses and System Support for Optimiza-
tioning Shared Address Space Programs. Ph.D. thesis, University of California,
Berkeley, 1998.

[25] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and
optimizations of blocked algorithms. In Proceedings of the Sixth International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, 1991.

[26] B. Liblit and A. Aiken. Type systems for distributed data structures. In Con-
ference Record of POPL’00: The 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 199–213, Boston, MA, 2000.

[27] B. Liblit, A. Aiken, and K. Yelick. Data Sharing Analysis for Titanium. Tech-
nical Report CSD-01-1165, Computer Science Division, University of Califor-
nia, Berkeley, 2001.

[28] Amy W. Lim and Monica S. Lam. Maximizing parallelism and minimizing
synchronization with affine partitions. Parallel Computing, 24:445–475, 1998.

[29] Amy W. Lim, Shih-Wei Liao, and Monica S. Lam. Blocking and Array Con-
traction Across Arbitrarily Nested Loops Using Affine Partitioning. ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
2001.

[30] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data
locality with loop transformations. ACM Transactions on Programming Lan-
guages and Systems, 18(4):424–453, 1996.

[31] M. F. P. O’Boyle, P. M. W. Knijnenburg, and G. G. Fursin. Feedback Assisted
Iterative Compilation. Preprint, 2000.

[32] G. Pike, L. Semenzato, P. Colella, P. Hilfinger. Parallel 3D Adaptive Mesh
Refinement in Titanium. In Proceedings of the SIAM Conference on Parallel
Processing for Scientific Computing, San Antonio, TX, March 1999.

[33] Sriram Sellappa and Siddhartha Chatterjee. Cache-Efficient Multigrid Algo-
rithms. In Proceedings of the 2001 International Conference on Computational
Science (ICCS 2001), San Francisco, CA, May 2001.

[34] Michelle Mills Strout, Larry Carter, Jeanne Ferrante, and Beth Simon.
Schedule-independent storage mapping for loops. International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), October 1998.

113

[35] William Thies, Frédéric Vivien, Jeffrey Sheldon, and Saman Amarasinghe. A
Unified Framework for Schedule and Storage Optimization. In Proceedings of
the 2001 SIGPLAN Conference on Programming Language Design and Im-
plementation.

[36] R. Whaley and J. Dongarra. Automatically Tuned Linear Algebra Software.
Technical Report UT CS-97-366, LAPACK Working Note No. 131, University
of Tennessee, 1997.

[37] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm.
In ACM SIGPLAN ’91 Conference on Programming Language Design and
Implementation, 1991.

[38] Michael Wolfe. Iteration space tiling for memory hierarchies. In Proceedings
of the 3rd SIAM Conference on Parallel Processing, 1987.

[39] Michael Wolfe. More iteration space tiling. In Proc. Supercomputing 89, pages
655–665, 1989.

[40] David G. Wonnacott. Constraint-Based Array Data Dependence Analysis.
Ph.D. thesis, Dept. of Computer Science, University of Maryland, August
1995.

[41] K. Yelick et al. Titanium: A High-Performance Java Dialect. In Proceedings of
the ACM 1998 Workshop on Java for High Performance Network Computing,
Stanford, CA, February 1998.

114

