
Concurrency Analysis for Parallel
Programs with Textually Aligned

Barriers

Amir Kamil Katherine Yelick

Computer Science Division, University of California, Berkeley
{kamil,yelick}@cs.berkeley.edu

Abstract. A fundamental problem in the analysis of
parallel programs is to determine when two state-
ments in a program may run concurrently. This anal-
ysis is the parallel analog to control flow analy-
sis on serial programs and is useful in detecting
parallel programming errors and as a precursor to
semantics-preserving code transformations. We con-
sider the problem of analyzing parallel programs that
access shared memory and use barrier synchroniza-
tion, specifically those with textually aligned barriers
and single-valued expressions. We present an inter-
mediate graph representation for parallel programs
and an efficient interprocedural analysis algorithm
that conservatively computes the set of all concur-
rent statements. We improve the precision of this al-
gorithm by using context-free language reachability
to ignore infeasible program paths. We then apply
the algorithms to static race detection and enforcing
a sequentially consistent execution in the Titanium
programming language and show that both can ben-
efit from the concurrency information provided.

1 Introduction

As the rate of scaling of uniprocessor machines slows down,
application writers and system vendors alike have been turn-
ing to multiprocessor machines for performance. Most ma-
jor CPU manufacturers have products or plans for chips with
multiple cores, so that parallelism once hidden within the
micro-architecture will now be exposed to the assembly lan-
guage and, in all likelihood, to application level software.
Such systems are modeled after SMP multiprocessors and al-
low all processors to simultaneously access shared memory.
In addition, for large-scale parallel machines there is increas-
ing interest in global address space languages, which give pro-
grammers the illusion of a shared memory machine on top of
distributed memory machines and clusters. Analysis and op-
timization of parallel shared memory code is increasingly im-
portant in both of these settings.

In this paper we introduce aninterprocedural concurrency
analysis for programs with barrier synchronization, which
captures information about the potential concurrency between

statements in a program. The analysis is done for the Tita-
nium language [29], a single program, multiple data global
address space variation of Java that runs on most parallel and
distributed memory machines. We first construct aconcur-
rency graphrepresentation of a program, taking advantage
of two features of the Titanium language parallel execution
model:textual barrier alignment, which statically guarantees
that all threads reach the same textual sequence of barriers,
and single-valuedexpressions, which provably evaluate to
the same value on all threads [1]. We then present a simple
algorithm that uses the concurrency graph to determine the
set of all concurrent expressions in a program. This analysis
proves too conservative, however, and we improve its preci-
sion by performing a context-free language analysis on a mod-
ified form of the concurrency graph. We prove the correctness
of both analyses and show that their total running times are
quadratic in the size of the input program.

Concurrency analysis can be used to improve the quality of
other analyses and to enable optimizations. To demonstrate
the usefulness of our concurrency analysis, we apply it to
two client problems. The first is data race analysis, which can
be used to report potential program errors to application pro-
grammers. The second ismemory consistency model enforce-
ment, which can be used to provide a stronger and more in-
tuitive memory model while still allowing the compiler and
hardware to reorder memory operations in many instances.
In related work with Su [15], we demonstrate that memory
model enforcement can have a significant negative impact on
optimizations as well, but that this effect is mitigated when
combined with our concurrency analysis. In this paper, we
focus on the foundations of the concurrency analysis prob-
lem: how it can be performed efficiently and be made accurate
enough to effectively increase the precision of both clients on
a set of application benchmarks.

2 Motivation

Concurrency information is useful for many program analyses
and optimizations. We focus on two clients that stand to ben-
efit from this information: static race detection and enforcing
sequential consistency.

2.1 Static Race Detection

In parallel programs, adata race occurs when multiple
threads access the same memory location, at least one of the
accesses is a write, and the accesses can occur concurrently
[21]. Data races often correspond to programming errors and
potentially result in non-deterministic runtime behavior. Con-
currency analysis can be used to statically detect races at

1

compile-time [11,12], particularly when combined with alias
analysis [2].

2.2 Sequential Consistency

For a sequential program, compiler and hardware transforma-
tions must not violate data dependencies: the order of all pairs
of conflicting memory accesses must be preserved. Two mem-
ory accessesconflict if they access the same memory loca-
tion and at least one of them is a write. The execution model
for parallel programs is more complicated, since each thread
executes its own portion of the program asynchronously and
there is no predetermined ordering among accesses issued by
different threads to shared memory locations. Amemory con-
sistency modeldefines the memory semantics and restricts the
possible execution order of memory operations.

Among the various models,sequential consistency[17] is
the most intuitive for the programmer. The sequential con-
sistency model states that a parallel execution must behave
as if it were an interleaving of the serial executions by indi-
vidual threads, with each individual execution sequence pre-
serving the program order [25]. For example, for the accesses
{x, y, a, b} in Figure 1, the behavior in whichy reads the
value 1 andb reads the value 0 is not sequentially consistent,
since it does not reflect an interleaving in which the order of
the individual execution sequences is preserved.

In order to enforce sequential consistency,memory barriers
must be inserted to prevent reordering of memory operations
by the compiler or architecture. Memory barriers prevent opti-
mizations such as prefetching and code motion, and can result
in an unacceptable performance penalty [19]. Thecycle detec-
tion algorithm computes the minimal set of memory barriers
needed to enforce sequential consistency [25,16]. Cycle de-
tection can benefit from concurrency information, since it can
ignore pairs of memory operations that cannot run concur-
rently [26,15].

3 Titanium Background

Titanium is a dialect of Java, but does not use the Java Virtual
Machine model. Instead, the end target is assembly code. For
portability, Titanium is first translated into C and then com-
piled into an executable. In addition to generating C code
to run on each processor, the compiler generates calls to a
runtime layer based on GASNet [6], a lightweight commu-
nication layer that exploits hardware support for direct re-
mote reads and writes when possible. Titanium runs on a wide
range of platforms including uniprocessors, shared memory
machines, distributed-memory clusters of uniprocessors or
SMPs (CLUMPS), and a number of specific supercomputer
architectures (Cray X1, Cray T3E, SGI Altix, IBM SP, Origin

2000, and NEC SX6). Instead of having dynamically created
threads as in Java, Titanium is asingle program, multiple data
(SPMD) language, so all threads execute the same code im-
age.

3.1 Textually Aligned Barriers

Like many SPMD languages, Titanium has abarrier construct
that forces threads to wait at the barrier until all threads have
reached it. Aiken and Gay introduced the concept ofstruc-
tural correctnessto enforce that all threads execute the same
number of barriers, and developed a static analysis that deter-
mines whether or not a program is structurally correct [1,13].
The following code is not structurally correct:

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads

else
; // odd ID threads

Titanium provides a stronger guarantee oftextually aligned
barriers: not only do all threads execute the same number of
barriers, they also execute the sametextualsequence of bar-
riers. Thus, both the above structurally incorrect code and the
following structurally correct code are erroneous in Titanium:

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads

else
Ti.barrier(); // odd ID threads

The fact that Titanium barriers are textually aligned is central
to our concurrency analysis: not only does it guarantee that
code before and after each barrier cannot run concurrently, it
also guarantees that code immediately following two different
barriers cannot execute simultaneously.

In order to enforce that a program correctly align barri-
ers, Titanium makes use ofsingle-valuedexpressions [1].
Such expressions evaluate to the same value for all threads,
and a combination of programmer annotation and compiler
inference is used to statically determine which expressions
are single-valued. A conditional may only contain a bar-
rier, or a call to a method with a barrier, if it is guarded
by a single-valued expression: the above code is erroneous
since Ti.thisProc() % 2 == 0 is not single-valued.
Our concurrency analysis also exploits such expressions and
conditionals to determine which conditional branches can run
concurrently.

Our concurrency analysis operates on the existing barriers
in a program – no additional barriers are inserted. The analy-
sis also ignores the lock-basedsynchronized construct of
Java, since it is rarely used in Titanium programs.

a [set data = 1]

x [set flag = 1] b [read data]

y [read flag]
T1 T2

Initially, flag = data = 0

y sees effect ofx b sees effect ofa possible sequential order
yes yes a⇒ x⇒ y ⇒ b

yes no none
no yes a⇒ y ⇒ b⇒ x

no no y ⇒ b⇒ a⇒ x

Fig. 1. A program fragment consisting of four memory accesses in two threads. The solid edges correspond to order in the
execution stream of each thread, and the dashed edges are conflicts. Of the four possible results of thread 1 visible to thread 2,
the second is illegal since it does not correspond to an overall execution sequence in which operations are not reordered within
a thread.

3.2 Memory Model

Titanium’s memory consistency semantics are arelaxed
modelsimilar to Java’s, providing few ordering guarantees.
In order to guarantee sequential consistency, memory barriers
must be inserted into a program to enforce order.

3.3 Intermediate Language

In this paper, we will operate on anintermediate languagethat
allows the full semantics of Titanium but is simpler to analyze.
In particular, we rewrite dynamic dispatches as conditionals.
A call x.foo() , wherex is of typeA in the hierarchy

class A {
void foo() { ... }

}

class B extends A {
void foo() { ... }

}

gets rewritten to

if ([type of x is A])
x.A$foo();

else if ([type of x is B])
x.B$foo();

We also rewriteswitch statements and conditional ex-
pressions (?/:) as conditionalif ... else ... state-
ments.

3.4 Control Flow Graphs

The algorithms in this paper operate over acontrol flow graph
that represents the flow of execution in a program. Nodes in
the graph correspond to expressions in the program, and a di-
rected edge from one expression to another occurs when the
target can execute immediately after the source.

The Titanium compiler produces an intraprocedural control
flow graph for each method in a program. We modify each of
these graphs to model transfer of control between methods by
splitting each method call node into a call node and a return
node. The incoming edges of the original node are attached to
the call node, and the outgoing edges to the return node. An
edge is added from the call node to the target method’s entry
node, and from the target method’s exit node to the return
node. Figure2 illustrates this procedure. We also add edges to
model interprocedural control flow due to exceptions.

4 Concurrency Analysis

Titanium’s structural correctness allows us to develop a sim-
ple graph-based algorithm for computing concurrent expres-
sions in a program. The algorithm specifically takes advantage
of Titanium’s textually aligned barriers and single-valued ex-
pressions.

The following definitions are useful in developing the anal-
ysis:

Definition 4.1 (Single Conditional).A single conditionalis
a conditional guarded by a single-valued expression.

Since a single-valued expression evaluates to the same re-
sult on all threads, every thread is guaranteed to take the same
branch of a single conditional. A single conditional thus may
contain a barrier, since all threads are guaranteed to execute
it, while a non-single conditional may not.

Definition 4.2 (Cross Edge).A cross edgein a control flow
graph connects the end of the first branch of a conditional to
the start of the second branch.

Cross edges do not provide any control flow information,
since the second branch of a conditional does not execute im-
mediately after the first branch. They are, however, useful for

Fig. 2.Construction of the interprocedural control flow graph of a program from the individual method flow graphs.

Algorithm 4.3.
ConcurrencyGraph(P : program) : graph

1. LetG be the interprocedural control flow graph ofP , as described in§3.4.
2. For each conditionalC in P {
3. If C is not a single conditional:
4. Add a cross edge forC in G.
5. } // End for (2).
6. For each barrierB in P :
7. DeleteB from G.
8. ReturnG.

Fig. 3. Algorithm 4.3 computes the concurrency graph of a program by inserting cross edges into its control flow graph and
deleting all barriers.

determining concurrency information, as shown in Theorem
4.4.

In order to determine the set of concurrent expressions in a
program, we construct aconcurrency graphG of the program
P by inserting cross edges in the interprocedural control flow
graph ofP for every non-single conditional and deleting all
barriers and their adjacent edges. Algorithm4.3 in Figure3
illustrates this procedure. The algorithm runs in time O(n),
wheren is the number of statements and expressions inP ,
since it takes O(n) time to construct the control flow graph of
a program. The control flow graph is very sparse, containing
only O(n) edges, since the number of expressions that can
execute immediately after a particular expressione is con-
stant. Since at mostn cross edges are added to the control
flow graph and at most O(n) barriers and adjacent edges are
deleted, the resulting graphG is also of size O(n).

The concurrency graphG allows us to determine the set of
concurrent expressions using the following theorem:

Theorem 4.4. Two expressionsa andb in P can run concur-
rently only if one is reachable from the other in the concur-
rency graphG.

In order to prove Theorem4.4, we require the following
definition:

Definition 4.5 (Code Phase).For each barrier in a program,
its code phaseis the set of statements that can execute after
the barrier but before hitting another barrier, including itself1.

Figure 4 shows the code phases of an example program.
Since each code phase is preceded by a barrier, and each
thread must execute the same sequence of barriers, each
thread executes the same sequence of code phases. This im-
plies the following:

Lemma 4.6. Two expressionsa and b in P can run concur-
rently only if they are in the same code phase.

Proof. Supposea andb are not in the same code phase. Then
they are preceded by two different barriersBa andBb. Con-
sider arbitrary occurrences ofa and b in any program exe-
cution in which they both occur. (If one or both don’t occur,
then they trivially don’t run concurrently.) Since every thread
executes the same set of barriers, eitherBa precedesBb or
Bb precedesBa. Sincea occurs afterBa but before any other
barrier, andb occurs afterBb but before any other barrier, this
implies thata andb are separated by a barrier. Thus,a andb
cannot run concurrently, since a barrier prevents the code be-
fore it and after it from executing concurrently. ut

1 A statement can be in multiple code phases, as is the case for a
statement in a method called from multiple contexts.

B1: Ti.barrier();
L1: int i = 0;
L2: int j = 1;
L3: if (Ti.thisProc() < 5)
L4: j += Ti.thisProc();
L5: if (Ti.numProcs() >= 1) {
L6: i = Ti.numProcs();
B2: Ti.barrier();
L7: j += i;
L8: } else { j += 1; }
L9: i = broadcast j from 0;
B3: Ti.barrier();
LA: j += i;

Code Phase Statements
B1 L1 , L2 , L3 , L4 , L5 , L6 , L8 , L9
B2 L7 , L9
B3 LA

Fig. 4.The set of code phases for an example program.

Now we can prove Theorem4.4:

Proof (of Theorem4.4). Supposea and b can run concur-
rently. By Lemma4.6, a and b must be in the same code
phaseS. By Definition 4.5, there must be program flows
from the initial barrierBS to a andb that do not go through
barriers. There are three cases:

Case 1:There is a program flow froma to b in S. This
means the control flow graph of the program must contain a
path from the node fora to the node forb that does not pass
through a barrier. SinceG is contains all nodes and edges of
the control flow graph except those corresponding to barriers,
it also contains such a path, sob is reachable froma.

Case 2:There is a program flow fromb to a in S. This
case is analogous to the one above.

Case 3: There is no program flow from eithera to b or
b to a in S. Since there is a flow fromBS to a and fromBS

to b, a and b must be in different branches of a conditional
C. Since only one branch of a single conditional can run,
C must be a non-single conditional in order fora and b to
run concurrently. Without loss of generality, leta be in the
first branch, andb be in the second. SinceC is non-single,
it cannot contain a barrier, and the end of the first branch is
reachable inG from a without hitting a barrier. Similarly,b is
reachable from the beginning of the second branch without
executing a barrier. SinceG contains a cross edge from the
first branch ofC to the second, this implies that there is a
path froma to b in G that does not pass through a barrier.ut

By Theorem4.4, in order to determine the set of all con-
current expressions, it suffices to compute the pairs of expres-
sions in which one is reachable from the other in the concur-
rency graphG. This can be done efficiently by performing a
depth first search from each expression inG. Algorithm4.7in
Figure5 does exactly this. The running time of the algorithm

is dominated by the depth first searches, each of which takes
O(n) time, sinceG has at mostn nodes and O(n) edges. At
mostn searches occur, so the algorithm runs in time O(n2).

5 Feasible Paths

Algorithm 4.7 computes an over-approximation of the set of
concurrent expressions. In particular, due to the nature of the
interprocedural control flow graph constructed in§3.4, the
depth first searches in Algorithm4.7 can follow infeasible
paths, paths that cannot structurally occur in practice. Figure
6 illustrates such a path, in which a method is entered from
one context and exits into another.

In order to prevent infeasible paths, we follow the proce-
dure outlined by Reps [23]. We label each method call edge
and corresponding return edge with matching parentheses, as
shown in Figure6. Each path then corresponds to a string of
parentheses composed of the labels of the edges in the path. A
path is then infeasible, if in its corresponding string, an open
parenthesis is closed by a non-matching parenthesis.

It is not necessary that a path’s string be balanced in order
for it to be feasible. In particular, two types of unbalanced
strings correspond to feasible paths:

– A path with unclosed parentheses. Such a path corre-
sponds to method calls that have not yet finished, as
shown in the left side of Figure7.

– A path with closing parentheses that follow a balanced
prefix. Such a string is allowed since a path may start
in the middle of a method call and corresponds to that
method call returning, as shown in the right side of Fig-
ure7.

Algorithm 4.7.
ConcurrentExpressions(P : program) : set

1. Letconcur ← ∅.
2. LetG← ConcurrencyGraph(P) [Algorithm 4.3].
3. For each accessa in P {
4. Do a depth first search onG starting froma.
5. For each expressionb reached in the search:
6. Insert(a, b) into concur.
7. } // End for (3).
8. Returnconcur.

Fig. 5.Algorithm 4.7computes the set of all concurrent expressions in a given program.

Fig. 6. Interprocedural control flow graph for two calls to the same function. The dashed path is infeasible, sincefoo()
returns to a different context than the one from which it was called. The infeasible path corresponds to the unbalanced string
“ [}”.

Fig. 7.Feasible paths that correspond to unbalanced strings. The dashed path on the left corresponds to a method call that has
not yet returned, and the one on the right corresponds to a path that starts in a method call that returns.

Determining the set of nodes reachable2 using a feasible
path is the equivalent of performing context-free language
(CFL) reachability on a graph using the grammar for each pair
of matching parentheses(α and)α. CFL reachability can be
performed in cubic time for an arbitrary grammar [23]. Algo-
rithm 4.7takes only quadratic time, however, and we desire a
feasibility algorithm that is also quadratic. In order to accom-
plish this, we develop a specialized algorithm that modifies
the concurrency graphG and the standard depth first search
instead of using generic CFL reachability.

At first glance, it appears that a method must be revisited
in every possible context in which it is called, since the con-
text determines which open parentheses have been seen and
therefore which paths can be followed. However, the follow-
ing implies that it is only necessary to visit the method in a
single context:

Theorem 5.1. Assuming nothing about the arguments, the set
of expressions that can be executed in a call to a methodf is
the same regardless of the context in whichf is called.

Proof (by Induction).
Base case:The execution off makes no method calls. Then
the call tof can execute at most those expressions that are
contained inf and reachable from its entry regardless of the
calling context.
Inductive step:The execution off makes method calls. By the
inductive hypothesis3, each method call inf can transitively
execute the same expressions independent of the context. In
addition, the call tof can execute exactly those expressions
that are contained inf and reachable from its entry. The call
to f thus can execute the same set of expressions regardless
of context. ut

Since the set of expressions that can be executed in a
method call is the same regardless of context, the set of nodes
reachable along a feasible path in a program’s control flow
graph is also independent of the context of a method call, with
two exceptions:

– The nodes reachable following the method call. If the
method call can complete, then the nodes after a method
call are reachable from a point before the method call.

– When no context exists, such as in a search that starts
from a point within a methodf . Then all nodes that are
reachable following any method call tof are reachable.

2 In this section, we make no distinction betweenreachableand
reachable without hitting a barrier. The latter reduces to the for-
mer if all barrier nodes are removed from each control flow graph.

3 In order for induction be be applicable, the function call depth in
f must be finite. It is reasonable to assume that this is always the
case, since in practice, an infinite function call depth is impossible
due to finite memory limits.

The second case above can easily be handled by visiting a
node twice: once insomecontext, and again in no context.
The first case, however, requires adding bypass edges to the
control flow graph.

5.1 Bypass Edges

Recall that the interprocedural control flow graph was con-
structed by splitting a method call into a call node and a re-
turn node. An edge was then added from the call node to the
target method’s entry, and another from the target’s exit to the
return node. If the target’s exit is reachable (or for our pur-
poses, reachable without hitting a barrier) from the target’s
entry, then adding abypass edgethat connects the call node
directly to the return node does affect the transitive closure of
the graph.

Computing whether or not a method’s exit is reachable
from its entry is not trivial, since it requires knowing whether
or not the exits of each of the methods that it calls are reach-
able from their entries. Algorithm5.2 in Figure8 does so by
continually iterating over all the methods in a program, mark-
ing those that can complete through an execution path that
only calls previously marked methods, until no more methods
can be marked. In the first iteration of loop 3, it only marks
those methods that can complete without making any calls,
or equivalently, those methods that can complete using only a
single stack frame. In the second iteration, it only marks those
that can complete by only calling methods that don’t need to
make any calls, or equivalently, those methods that can com-
plete using only two stack frames. In general, a method is
marked in theith iteration if it can complete usingi, and no
less thani, stack frames4.

Theorem 5.3. Algorithm 5.2 marks all methods that can
complete using any number of stack frames.

Proof. Suppose there are some methods that can complete but
that Algorithm5.2does not find. Out of these methods, letf
be the one that can complete with the minimum number of
stack framesj. In order forf to requirej frames to com-
plete, there must be an execution path throughf that only
calls methods that require at mostj − 1 frames to complete.
These methods must all be marked, sincef was the minimum
method that wasn’t marked. Sincef requiresj frames, at least
one of the methods called must requirej − 1 frames and thus
was marked in the(j − 1)th iteration of loop 3 above. Loop

4 Note that just because a method only requires a fixed number of
stack frames doesn’t mean that it can complete. A method may
contain an infinite loop, preventing it from completing at all, or
barriers along all paths through it, preventing it from completing
without executing a barrier. Algorithm5.2 does not mark such
methods.

Algorithm 5.2.
ComputeBypasses(P : program,G1, . . . , Gk : intraprocedural flow graph) : set

1. Letchange← true.
2. Letmarked← ∅.
3. Whilechange = true {
4. change← false.
5. Setvisited(u)← false for all nodesu in G1, . . . , Gk.
6. For each methodf in P {
7. If f 6∈ marked andCanReach(entry(f), exit(f), Gf , marked) {
8. marked← marked ∪ {f}.
9. change← true.

10. } // End if (7).
11. } // End for (6).
12. } // End while (3).
13. Returnmarked.

14. ProcedureCanReach(u, v : vertex,G : graph,marked : method set) : boolean:
15. Setvisited(u)← true.
16. If u = v:
17. Returntrue.
18. Else Ifu is a method call to functiong andg 6∈ marked:
19. Returnfalse.
20. For each edge(u, w) ∈ G {
21. If visited(w) = false andCanReach(w, v, G, marked):
22. Returntrue.
23. } // End for (20).
24. Returnfalse.

Fig. 8.Algorithm 5.2uses each method’s intraprocedural control flow graph to determine if its exit is reachable from its entry.

3 will thus iterate at least once more, and sincef now has a
path in which it only calls marked methods,f will be marked,
which is a contradiction. Thus Algorithm5.2marks all meth-
ods that can complete. ut

Algorithm 5.2 requires quadratic time to complete in the
worst case. Each iteration of loop 3 visits at mostn nodes.
Only k iterations are necessary, wherek is the number of
methods in the program, since at least one method is marked
in all but the last iteration of the loop. The total running time
is thus O(kn) in the worst case. In practice, only a small num-
ber of iterations are necessary5, and the running time is closer
to O(n).

After computing the set of methods that can complete, it is
straightforward to add bypass edges to the concurrency graph
G: for each method callc, if the target ofc can complete, add
an edge fromc to its corresponding method returnr. This can
be done in time O(n).

5.2 Feasible Search

Once bypass edges have been added to the graphG, a mod-
ified depth first search can be used to find feasible paths. A
stack of open but not yet closed parenthesis symbols must be
maintained, and an encountered closing symbol must match
the top of this stack, it the stack is nonempty. In addition, as
noted above, the modified search must visit each node twice,
once in no context and once insomecontext. Algorithm5.4
in Figure9 formalizes this procedure.

Theorem 5.5. Algorithm 5.4 does not follow any infeasible
paths.

Proof. Consider an arbitrary infeasible pathp. In order for
p to be infeasible, the labels alongp must form a string in
which an open parenthesis(α is closed by a non-matching
parenthesis)β . Consider the execution of Algorithm5.4 on
this path. An open parenthesis is pushed onto the the stacks
when it is encountered, so before any close parentheses are
encountered, the top of the stack is the most recently opened
parenthesis. A close parenthesis causes the top of the stack
to be popped, so in general, the top of the stack is the most
recently opened parenthesis that has not yet been closed. Now
considers when the label)β is reached. The symbol(α must
be on the top ofs, since)β closes it. But Algorithm5.4checks
the top of the stack against the newly encountered label, and
since they don’t match, it does not proceed alongp. ut

SinceG contains bypass edges and Algorithm5.4 visits
each node both in some context and in no context, it finds all

5 Even on the largest example we tried (>45,000 lines of user and
library code, 1226 methods), Algorithm5.2 required only five it-
erations to converge.

nodes that can be reachable in a feasible path from the source.
Since it visits each node at most twice, it runs in time O(n).

5.3 Feasible Concurrent Expressions

Putting it all together, we can now modify Algorithm4.7 to
find only concurrent expressions that are feasible. As in Algo-
rithm 4.7, the concurrency graphG must first be constructed.
Then the intraprocedural flow graphs of each method must be
constructed, Algorithm5.2 used to find the methods that can
complete without hitting a barrier, and the bypass edges in-
serted intoG. Then Algorithm5.4 must be used to perform
the searches instead of a vanilla depth first search. Algorithm
5.6 in Figure10 illustrates this procedure.

The setup of Algorithm5.6calls Algorithm5.2, so it takes
O(kn) time. The searches each take time O(n), and at mostn
are done, so the total running time is O(kn + n2) = O(n2),
quadratic as opposed to the cubic running time of generic CFL
reachability.

6 Evaluation

We evaluate our concurrency analysis using two clients: static
race detection and enforcing sequential consistency at the lan-
guage/compiler level. We use the following set of benchmarks
for our evaluation:

– gas [5] (8841 lines): Hyperbolic solver for a gas dynam-
ics problem in computational fluid dynamics.

– gsrb (1090 lines): Nearest neighbor computation on a
regular mesh using red-black Gauss-Seidel operator. This
computational kernel is often used within multigrid algo-
rithms or other solvers.

– lu-fact (420 lines): Dense linear algebra.
– pps [4] (3673 lines): Parallel Poisson equation solver us-

ing the domain decomposition method in an unbounded
domain.

– spmv (1493 lines): Sparse matrix-vector multiply.

The line counts for the above benchmarks underestimate the
amount of code actually analyzed, since all reachable code in
the 37,000 line Titanium and Java 1.0 libraries is also pro-
cessed.

6.1 Static Race Detection

Using our concurrency analysis and a thread-aware alias anal-
ysis, we built a compile-time data race analysis into the Tita-
nium compiler. Static information is generally not enough to
determine with certainty that two memory accesses compose
a race, so nearly all reported races are false positives. (The
correctness of the alias and concurrency analyses ensure that

Algorithm 5.4.
FeasibleSearch(v : vertex,G : graph) : set

1. Letvisited← ∅.
2. Lets← ∅.
3. CallFeasibleDFS(v, G, s, visited).
4. Returnvisited.

5. ProcedureFeasibleDFS(v : vertex,G : graph,s : stack,visited : set):
6. If s = ∅ {
7. If no context mark(v) return.
8. Setno context mark(v)← true.
9. } // End if (6).

10. Else{
11. If context mark(v) return.
12. Setcontext mark(v)← true.
13. } // End else (10).
14. visited← visited ∪ {v}
15. For each edge(v, u) ∈ G {
16. Lets′ ← s.
17. If label(v, u) is a close symbol ands′ 6= ∅ {
18. Leto← pop(s′).
19. If label(v, u) does not matcho:
20. Skip to next iteration of 15.
21. } // End if (17).
22. Else iflabel(v, u) is an open symbol:
23. Pushlabel(v, u) ontos′.
24. CallFeasibleDFS(u, G, s).
25. } // End for (15).

Fig. 9.Algorithm 5.4computes the set of nodes reachable from the start node through a feasible path.

Algorithm 5.6.
FeasibleConcurrentExpressions(P : program) : set

1. LetG← ConcurrencyGraph(P) [Algorithm 4.3].
2. For each methodf in P {
3. Construct the intraprocedural flow graphGf of f .
4. For each barrierB in f {
5. DeleteB from Gf .
6. } // End for (4).
7. } // End for (2).
8. Letbypass← ComputeBypasses(P , G1, . . . , Gk) [Algorithm 5.2].
9. For each method call and return pairc, r in P {

10. If the targetf of c, r is in bypass:
11. Add an edge(c, r) to G.
12. } // End for (9).
13. For each expressiona in P {
14. Letvisited← FeasibleSearch(a, G) [Algorithm 5.4].
15. For each expressionb ∈ visited:
16. Insert(a, b) into concur.
17. } // End for (13).
18. Returnconcur.

Fig. 10.Algorithm 5.6computes the set of all concurrent expressions that can feasibly occur in a given program.

no false negatives occur.) We therefore consider a race detec-
tor that reports the fewest races to be the most effective.

Table 1. Number of data races detected by thebaselevel of
analysis.

BenchmarkRaces Detected
gas 1410
gsrb 33
lu-fact 7
pps 80
spmv 15

Number of Data Races Detected

0

0.2

0.4

0.6

0.8

1

1.2

gas gsrb lu-fact pps spmv
Benchmark

Fr
ac

tio
n

C
om

pa
re

d
to

 b
as

e

base concur feasible

Fig. 11.Fraction of data races detected at compile-time com-
pared tobase.

Figure11compares the effectiveness of three levels of race
detection:

– base: only alias analysis is used to detect potential races
– concur: our basic concurrency analysis (§4) is used to

eliminate non-concurrent races
– feasible: our feasible paths concurrency analysis (§5) is

used to eliminate non-concurrent races

For reference, the number of races detected by thebaseanal-
ysis is reported in Table1.

The results show that the addition of concurrency analysis
can eliminate most of the races reported by our detector. Two
of the benchmarks do not benefit at all from the basic concur-
rency analysis, but all benefit considerably from the feasible
paths analysis. The concurrency analysis should be of signif-
icant help to users of our race detector by weeding out many
false positives.

6.2 Sequential Consistency

In order to enforce sequential consistency in Titanium, we
insert memory barriers where required in an input program.
These memory barriers can be expensive to execute at run-
time, potentially costing an entire roundtrip latency for a re-
mote memory access. The memory barriers also prevent code
motion, so they directly preclude many optimizations from
being performed. The static number of memory barriers gen-
erated provides a rough estimate for the amount of optimiza-
tion prevented, but the affected code may actually be unreach-
able at runtime or may not be significant to the running time
of a program. We therefore additionally measure the dynamic
number of memory barriers hit at runtime, which more closely
estimates the performance impact of the inserted memory bar-
riers.

Table 2. Number of static and dynamic barriers required by
thebaselevel of analysis.

Static MemoryDynamic Memory
Benchmark Barriers Barriers
gas 346 3.3M
gsrb 128 120K
lu-fact 14 1.6M
pps 286 94M
spmv 34 9.4M

Number of Static Memory Barriers

0

0.2

0.4

0.6

0.8

1

1.2

gas gsrb lu-fact pps spmv
Benchmark

Fr
ac

tio
n

C
om

pa
re

d
to

 b
as

e

base concur feasible

Fig. 12. Fraction of memory barriers generated at compile-
time compared tobase.

Figure12 compares the number of memory barriers gener-
ated for each program using different levels of analysis:

– base: cycle detection is used to determine the minimal
number of memory barriers

Number of Dynamic Memory Barriers

0

0.2

0.4

0.6

0.8

1

1.2

gas gsrb lu-fact pps spmv
Benchmark

Fr
ac

tio
n

C
om

pa
re

d
to

 b
as

e

base concur feasible

Fig. 13. Fraction of memory barriers executed at runtime
compared tobase.

– concur: our basic concurrency analysis (§4) is addition-
ally used to eliminate memory barriers for pairs of non-
concurrent memory accesses

– feasible: our feasible paths concurrency analysis (§5) is
additionally used to eliminate memory barriers for pairs
of non-concurrent memory accesses

Figure13 compares the resulting dynamic counts at runtime.
For reference, the number of static and dynamic memory bar-
riers required by thebaselevel of analysis is show in Table
2.

The results show that our analysis, at its highest precision,
is very effective in reducing the numbers of both static and
dynamic memory barriers. In three of the benchmarks, nearly
all runtime memory barriers are eliminated, and in another,
the number of memory barriers hit is reduced by a large frac-
tion. In only one benchmark,gas , is our analysis ineffective:
while it does reduce the number of concurrent pairs detected,
it does not significantly reduce the number of memory ac-
cesses that are a member ofsomepair (134 underbasecom-
pared to 124 underfeasible), preventing cycle detection from
benefiting from the analysis.

It is interesting to note that eliminating infeasible paths is
effective in three of the four benchmarks for which our anal-
ysis is useful. It should also be noted that most of the remain-
ing memory barriers are due to imprecision in our support-
ing analyses, such as the inability of our alias analysis to dis-
tinguish array indices. Even so, our analysis significantly re-
duces the number of memory barriers required for enforcing
sequential consistency.

7 Related Work

An extensive amount of work on concurrency analysis has
been done for both languages with dynamic parallelism and
SPMD programs. Duesterwald and Soffa presented a data
flow analysis to compute thehappened-beforeandhappened-
after relation for program statements [11]. Their analysis is
for detecting races in programs based on the Ada rendezvous
model [27]. Masticola and Ryder developed a more precise
non-concurrency analysis for the same set of programs [20].
The results are used for debugging and optimization. Jeremi-
assen and Eggers developed a static analysis for barrier syn-
chronization for SPMD programs with non-textual barriers
[14]. They used the information to reduce false sharing on
cache-coherent machines.

Others besides Duesterwald and Soffa and Masticola and
Ryder have developed tools for race detection. Flanagan and
Freund presented a static race detection tool for Java based
on type inference and checking [12]. Boyapati and Rinard
developed a type system for Java that guarantees that a pro-
gram is race-free [7]. Tools such as Eraser [24] and TRaDe
[9] detect races at runtime instead of statically. Other static
and dynamic race detection schemes have also been devel-
oped [28,3,10,8,22].

The concept of sequential consistency was first defined by
Lamport [17]. Shasha and Snir provided some of the founda-
tional work in enforcing sequential consistency from a com-
piler level when they introduced the idea ofcycle detection
for general parallel programs [25]. Krishnamurthy and Yelick
presented a practical cycle detection analysis for the restricted
case of SPMD programs [16]. They also used concurrency
analysis to reduce the number of memory barriers, but their
non-textual barriers forced them to generate both an opti-
mized and an unoptimized version of the code and to switch
between them at runtime depending on how the barriers lined
up. Midkiff and Padua outlined some of the implementation
techniques that could violate sequential consistency and de-
veloped some static analysis ideas, including a concurrent
static single assignment form in a paper by Lee et al. [18].
More recently, Sura et al. used cooperating escape, thread
structure, and delay set analyses to provide sequential con-
sistency cheaply in Java [26].

Our work differs from previous work in that we develop an
analysis specifically for SPMD programs with textual barri-
ers. This allows our analysis to be both sound, unlike that of
Krishnamurthy and Yelick, and precise. In addition, our anal-
ysis takes advantage of single-valued expressions, which no
previous analysis does.

We presented a more abstract version of our concurrency
analysis and its application to sequential consistency in a pre-
vious paper [15]. That analysis was slightly less precise, fol-

lowed infeasible program paths, and would have been much
more difficult to modify to ignore them.

8 Conclusion

In this paper, we made several contributions to the founda-
tion of parallel program analysis, specifically the concurrency
analysis problem of determining whether two statements can
execute concurrently. We introduced a graph representation of
parallel programs with textually aligned barriers and two dif-
ferent concurrency analyses. The first was a basic concurrency
analysis that uses barriers and single-valued expressions, and
the second a more complex one that only explores those ex-
ecution paths across function calls that can occur in practice.
We experimented with several benchmark programs using two
client problems, data race detection and enforcing a sequen-
tially consistent execution. Our experiments showed that the
analyses were able to eliminate a large fraction of the false
positives reported by a race detector in all programs and most
of the memory barriers required to provide sequential consis-
tency in all but one program. We believe the efficiency and
precision of our concurrency analysis make it a very useful
tool in analyzing parallel programs with textually aligned bar-
riers.

In addition to aiding in optimizations and helping to de-
tect parallel programming errors, the ability to perform such
analyses may affect a language designer’s choice of program-
ming model semantics. Simpler programming models, such
as those that prohibit races, use synchronous communication,
or ensure a strong memory model, may be feasible if accu-
rate analyses can be developed to enable optimizations while
ensuring a stronger semantics. Our analysis is one piece of a
larger picture on the kinds of parallelism constructs and syn-
chronization operations for which accurate concurrency anal-
yses can be developed.

Acknowledgments

We would like to thank Jimmy Su, who helped us a great deal
both in developing the concurrency algorithms and in imple-
menting them. We would also like to thank the Titanium group
for their valuable support.

References

1. A. Aiken and D. Gay. Barrier inference. InPrinciples of Pro-
gramming Languages, San Diego, California, January 1998.

2. L. O. Andersen.Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of
Copenhagen, May 1994.

3. D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect
of Java without data races. InOOPSLA ’00: Proceedings of
the 15th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages 382–
400, New York, NY, USA, 2000. ACM Press.

4. G. T. Balls.A Finite Difference Domain Decomposition Method
Using Local Corrections for the Solution of Poisson’s Equation.
PhD thesis, Department of Mechanical Engineering, University
of California at Berkeley, 1999.

5. M. Berger and P. Colella. Local adaptive mesh refinement
for shock hydrodynamics.Journal of Computational Physics,
82(1):64–84, May 1989. Lawrence Livermore Laboratory Re-
port No. UCRL-97196.

6. D. Bonachea. GASNet specification, v1.1. Technical Re-
port UCB/CSD-02-1207, University of California, Berkeley,
November 2002.

7. C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe
programming: preventing data races and deadlocks. InOOP-
SLA ’02: Proceedings of the 17th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and ap-
plications, pages 211–230, New York, NY, USA, 2002. ACM
Press.

8. G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F.
Stark. Detecting data races in Cilk programs that use locks.
In SPAA ’98: Proceedings of the tenth annual ACM symposium
on Parallel algorithms and architectures, pages 298–309, New
York, NY, USA, 1998. ACM Press.

9. M. Christiaens and K. De Bosschere. TRaDe, a topological ap-
proach to on-the-fly race detection in Java programs. InPro-
ceedings of the Java Virtual Machine Research and Technology
Symposium (JVM ’01), April 2001.

10. A. Dinning and E. Schonberg. Detecting access anomalies in
programs with critical sections. InPADD ’91: Proceedings of
the 1991 ACM/ONR workshop on Parallel and distributed de-
bugging, pages 85–96, New York, NY, USA, 1991. ACM Press.

11. E. Duesterwald and M. Soffa. Concurrency analysis in the
presence of procedures using a data-flow framework. InSym-
posium on Testing, analysis, and verification, Victoria, British
Columbia, October 1991.

12. C. Flanagan and S. N. Freund. Type-based race detection for
Java. InPLDI ’00: Proceedings of the ACM SIGPLAN 2000
conference on Programming language design and implementa-
tion, pages 219–232, New York, NY, USA, 2000. ACM Press.

13. D. Gay.Barrier Inference. PhD thesis, University of California,
Berkeley, May 1998.

14. T. Jeremiassen and S. Eggers. Static analysis of barrier synchro-
nization in explicitly parallel programs. InParallel Architec-
tures and Compilation Techniques, Montreal, Canada, August
1994.

15. A. Kamil, J. Su., and K. Yelick. Making sequential consis-
tency practical in Titanium. InSupercomputing 2005, November
2005. To appear.

16. A. Krishnamurthy and K. Yelick. Analyses and optimizations
for shared address space programs.Journal of Parallel and Dis-
tributed Computations, 1996.

17. L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs.IEEE Transactions on
Computers, 28(9):690–691, September 1979.

18. J. Lee, S. Midkiff, and D. Padua. Concurrent static single as-
signment form and constant propagation for explicitly parallel
programs. InProceedings of 1999 ACM SIGPLAN Symposium
on the Principles and Practice of Parallel Programming, May
1999.

19. J. Lee and D. Padua. Hiding relaxed memory consistency with
compilers. InParallel Architectures and Compilation Tech-
niques, Barcelona, Spain, September 2001.

20. S. Masticola and B. Ryder. Non-concurrency analysis. InPrin-
ciples and practice of parallel programming, San Diego, Cali-
fornia, May 1993.

21. R. H. B. Netzer and B. P. Miller. What are race conditions?:
Some issues and formalizations.ACM Lett. Program. Lang.
Syst., 1(1):74–88, 1992.

22. R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detec-
tion. In PPoPP ’03: Proceedings of the ninth ACM SIGPLAN
symposium on Principles and practice of parallel programming,
pages 167–178, New York, NY, USA, 2003. ACM Press.

23. T. Reps. Program analysis via graph reachability. InILPS
’97: Proceedings of the 1997 international symposium on Logic
programming, pages 5–19, Cambridge, MA, USA, 1997. MIT
Press.

24. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: a dynamic data race detector for multithreaded
programs.ACM Trans. Comput. Syst., 15(4):391–411, 1997.

25. D. Shasha and M. Snir. Efficient and correct execution of par-
allel programs that share memory.ACM Trans. Program. Lang.
Syst., 10(2):282–312, 1988.

26. Z. Sura, X. Fang, C. Wong, S. Midkiff, and D. Padua. Com-
piler techniques for high performance sequentially consistent
Java programs. InPrinciples and Practice of Parallel Program-
ming, Chicago, Illinois, June 2005.

27. United States Department of Defense. Reference manual for
the Ada programming language. Technical Report ANSI/MIL-
STD-1815A, Washington, D.C., January 1983.

28. C. von Praun and T. R. Gross. Static conflict analysis for multi-
threaded object-oriented programs. InPLDI ’03: Proceedings
of the ACM SIGPLAN 2003 conference on Programming lan-
guage design and implementation, pages 115–128, New York,
NY, USA, 2003. ACM Press.

29. K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Kr-
ishnamurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and
A. Aiken. Titanium: A high-performance Java dialect. InWork-
shop on Java for High-Performance Network Computing, Stan-
ford, California, February 1998.

