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ABSTRACT
The file I/O classes present in Java have proven too inefficient to
meet the demands of high-performance applications that perform
large amounts of I/O. The inefficiencies stem primarily from the
library interface which requires programs to read arrays a single
element at a time. We present two extensions to the Java I/O
libraries which alleviate this problem. The first adds bulk (array)
I/O operations to the existing libraries, removing much of the
overhead currently associated with array I/O. The second is a
new library that adds direct support for asynchronous I/O to en-
able masking I/O latency with overlapped computation.  The
extensions were implemented in Titanium, a high-performance,
parallel dialect of Java. We present experimental results that
compare the performance of the extensions with the existing I/O
libraries on a simple, external merge sort application. The results
demonstrate that our extensions deliver vastly superior I/O per-
formance for this array-based application.
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1. INTRODUCTION
One of the defining characteristics of high-performance scientific
applications is that they frequently involve massive amounts of
I/O. For example, Rosario [20] reports that typical modern
supercomputer applications involve anywhere from 1GB to 4TB
of I/O per run and I/O rates of up to 40MB/s. The primary tech-
niques for maintaining high performance with this level of disk
activity are tuning the data distribution across nodes and provid-
ing implicitly or explicitly overlapped I/O.  Data distribution
seeks to balance the disk workload across nodes and is an im-
portant and well-studied topic ([1], [12], [19]), but is orthogonal
to the scope of this paper.  This research focuses on maximizing
the I/O performance for each node given a fixed workload.

Unfortunately, the interface1 to the existing Java I/O libraries is
ill suited for the I/O requirements of high-performance, array-
based applications. The methods which provide file I/O limit an
application to transferring data a single value at a time, which
implies a method call overhead linear in the number of primitive
data values.  This situation is entirely unacceptable for scientific
applications, which frequently perform I/O on large arrays of
data.

This research proposes and implements a two-part solution. The
first part is a small, straightforward extension to the existing
Java I/O libraries that enables bulk I/O.  This extension alone
provides an enormous improvement in performance for a large
class of I/O–bound applications by removing the limitations im-
posed by the existing library interfaces. The second part is a new
library that provides direct support for asynchronous bulk I/O,
making it easier to mask disk latency with overlapped computa-
tion. This interface can provide an additional performance boost
to applications with a heavy, yet predictable I/O workload.

The extensions were implemented and tested in Titanium [26], a
high-performance, parallel dialect of Java. The extensions utilize
some native methods (whose implementation is specific to the
Titanium runtime system) but the library interfaces are appropri-
ate for standard Java and the implementation could easily be
ported. It is our belief that the concepts explored and perform-
ance results are relevant to any high-performance dialect of Java
that wishes to support the I/O demands of array-based, data-
intensive applications.

Section 2 provides background information about the existing I/O
primitives in Java, the Titanium language, and related work.
Section 3 presents the bulk synchronous extensions. Section 4
presents the bulk asynchronous extensions. Section 5 presents
performance results. Section 6 describes limitations and future
work, and we conclude in Section 7.

2. BACKGROUND
2.1 Bulk I/O in Java
The lack of support for bulk I/O in Java is a well-known design
deficiency that has caused problems in adapting Java for use in
high-performance computing. Dickens and Thakur [6] present a
detailed investigation of this problem and we shall summarize
the issues here. Because Titanium is a superset of Java 1.0, we
have restricted our attention to the I/O primitives present in that
                                                            
1 Throughout this paper, the word “interface” is used in the sense

of the Application Programming Interface (API) of the class
under consideration, not in the sense of a Java interface, which
is an object-oriented language construct. Also, the phrase “I/O”
is used to mean “file I/O”.
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version of the specification; however, Dickens and Thakur report
the situation remains essentially unchanged in newer flavors of
Java.

File I/O in Java comes in two basic forms. The java.io.Random-
AccessFile class provides unbuffered random file access using a
seekable file-pointer similar to the fread()/fwrite() functions in
the C runtime library. The java.io.FileInputStream and
java.io.FileOutputStream classes act as a bottom-level stream
interface for sequential, unbuffered, stream-based file I/O. The
java.io library provides a rich set of stream operators which can
be composed to provide various filtering and buffering charac-
teristics. For example, a common composition for input is:

DataInputStream dis = new DataInputStream(
                 new BufferedInputStream(
                 new FileInputStream(<filename>)))

where the BufferedInputStream provides buffering, and the Data-
InputStream performs translation from the abstract stream to
useful Java primitive data types. Both interfaces are rather ele-
gant and make for writing clear, well-abstracted code – however,
they are both poorly suited to meet the performance demands of
scientific or data-intensive applications that involve large
amounts of file I/O.

The primary problem shared by both interfaces is they provide
essentially no support for bulk I/O transfers between the library
and the application variables. All accesses must go through the
read*() and write*() methods of the DataInput and DataOutput
abstract interfaces, which only allow reading/writing a single
primitive data value at a time (e.g. readLong(), writeDouble(),
etc.)  The only bulk operations provided are for byte arrays,
which are used to implement the stream interface. However, the
type safety of Java prevents one from efficiently doing much
useful work with these byte arrays; at best one can parse the
values one at a time (by using them to construct a stream or
String, or in a platform-dependent way using arithmetic).

As a consequence of this interface, file I/O in Java commonly
involves tight loops that transfer file data to or from an array
where it is worked on – this is especially true for scientific or
data-mining applications that frequently employ large array data
structures. Needless to say, this implies significant software
overheads associated with array I/O, as the number of method
calls is linear in the number of primitive input/output values,
rather than in the number of arrays the application wants to read
or write2. This is a significant oversight on the part of the Java
designers, and limiting the interface in this manner creates
enormous I/O bottlenecks in applications that perform large
amounts of file I/O. The first extension implemented in this proj-
ect solves this problem by adding bulk I/O primitives to the li-
braries that perform I/O on entire arrays with a single method
call.

                                                            
2 To make matters worse, the composition of streams often im-

plies a chain of method call invocations for each primitive in-
put/output call. Furthermore, the implementation of the I/O
primitives for multi-byte values sometimes involves multiple
calls to the single-byte primitives (e.g. DataInput-
Stream.readLong() is often implemented as 8 calls to the Data-
Input.read() method that inputs a single byte).

It is important to note that the semantics for both existing inter-
faces are entirely synchronous. The BufferedInputStream / Buf-
feredOutputStream classes provide implicit prefetching and
write-behind caching in a private buffer (of a user-specified
size), but all buffer reads and writes block the thread of control
issuing the request that triggers a buffer flush/refill. There may
be some opportunity for adding asynchronous buffer management
at this level of the abstraction; however, because users are free to
compose streams in any way they wish and even define streams
of their own, this could produce unpredictable and often undesir-
able results (especially when the bottom level is something other
than a file, such as a communication pipe to a different process).
A more subtle difficulty with the stream buffering classes, recog-
nized by Heydon and Najork, is that they impose a non-trivial
synchronization overhead in order to maintain thread-safety [9].

2.2 Titanium
Titanium is a high-performance, explicitly parallel, SPMD dia-
lect of Java developed at U.C. Berkeley for programming shared-
memory and distributed-memory parallel systems. Titanium in-
corporates the power of Split-C [25], a low-level SPMD lan-
guage, into a high-level object-oriented programming language
that frees the programmer from much of the tedium associated
with writing and debugging parallel programs.  Titanium is es-
sentially a superset of Java 1.0, including all the expressiveness
and safety features of that language, with a wealth of new fea-
tures that support high-performance SPMD programming, such
as: user-defined immutable classes, zone-based memory man-
agement, local and global references, flexible and efficient multi-
dimensional arrays, unordered loop iteration, and a library of
useful parallel primitives including barrier, broadcast, exchange,
and various reductions [2], [29], [10].  The compiler performs
extensive static analysis (with some assistance from programmer-
inserted type qualifiers) to statically guarantee freedom from
deadlock on barrier synchronization [7]. The primary goals of the
language, in order of importance are: performance, safety and
expressiveness. Titanium is especially well adapted for writing
grid-based scientific parallel applications, and several such major
applications have been written and continue to be further devel-
oped [25].

The Titanium compiler performs various optimizations using
knowledge of the parallel control flow, and translates programs
entirely to C, where they are compiled (and optimized further) by
a C compiler and then linked to the proper Titanium runtime
libraries (there is no JVM). The Titanium backend has been
ported to several platforms, including SMP’s running Solaris or
Posix threads, Solaris and Linux uniprocessors, Cray T3E, IBM
SP2, Tera MTA and the Berkeley NOW (a cluster of Ultra-
SPARC’s [5], [17]).

The only major Java feature which is not currently supported by
Titanium is arbitrary multi-threading.  That is, the user cannot
create arbitrary asynchronous threads of control within a process.
Although Titanium does not employ an explicit message-passing
paradigm, the SPMD control model is central to the design of the
language, and this programming paradigm does not typically
accommodate arbitrary threading [3].  A Titanium program runs
on a fixed set of processors (which may be virtual processors in
the case of uniprocessors, or real processors in the case of SMP’s
and distributed-memory multiprocessors) – the number of proc-
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essors is determined when the parallel job begins, and remains
constant throughout the run of the program.  This property is
useful in implementing the optimizations and features of Tita-
nium, and crucial to the static prevention of deadlock.

One significant drawback to Titanium’s restriction on arbitrary
multi-threading is that applications cannot implement asynchro-
nous file I/O using the blocking I/O primitives from the Java
libraries. Consequently, Titanium applications with demanding
I/O requirements have no way to hide disk latency with over-
lapped computation.  The AsyncFile library created by this proj-
ect alleviates this problem by providing the Titanium program-
mer easy access to efficient, non-blocking I/O routines that per-
mit I/O to be overlapped with continued computation and net-
work activity3.

2.3 Asynchronous File I/O
Historically, asynchronous I/O has often been cited as an impor-
tant optimization in masking disk latency, but it is rarely imple-
mented at the level of the application or even the runtime system,
and there is no widely accepted standard interface.  The reason
seems to be that the implementation of synchronization and
threading varies considerably across languages and operating
systems. Most modern operating systems implement some form
of file-system buffering (which can be seen as a limited form of
asynchronous I/O) that effectively overlaps some disk latency
with ongoing computation. However, this buffering tends to work
best with sequential reads and writes (where sequential pre-
fetching and write-behind caching help out), and cannot remove
the latency and resource overhead associated with copying the
data to and from the OS buffers [11], [23], [28].

2.3.1 Overview of Asynchronous I/O
Implementations of asynchronous I/O cluster around two major
points in the design space. The first category is multi-threading
of synchronous I/O – where the application programmer writes
code to explicitly create a new thread that calls a standard
blocking I/O interface, and to synchronize that thread with the
computation thread once the I/O completes.  This approach
places the greatest burden on the application and can quickly
lead to very messy code or deadlocks because the programmer
has to manage the I/O synchronization explicitly. This approach
does have the advantage of being the more portable of the two –
although there are still difficulties because the multi-threading
interface can vary somewhat between platforms. This approach
also seems to work best when programmed to be explicitly aware
of the virtual memory system – first, to prevent buffers from
being swapped out to disk, and second, to reduce the number of
intermediate in-memory data copies to one or zero. This tends to
make implementations even more platform-specific.

The second option relegates the bulk of the complexity to the
kernel or an I/O library, which manages the various I/O threads
internally, providing the programmer with a relatively simple
interface for making requests and retrieving results.  There are
variations in how these implementations communicate results to
the application; some use an interrupt-based approach, where the

                                                            
3 Incidentally, asynchronous I/O can also make applications more

tolerant to irregularities in disk performance due to contention.

application receives a signal or a call to a handler routine when
the operation completes. Others use explicit synchronization,
where the application must poll the status of or wait for the re-
sults of an ongoing asynchronous I/O operation.  Still others are
some combination of these approaches.  All such interfaces de-
cree that the application must not touch the memory buffer asso-
ciated with the request throughout the duration of the operation;
this property allows the library to service the I/O request directly
on the memory buffer without making an additional copy to pre-
vent race conditions.

2.3.2 Brief Case Study of Asynchronous I/O
One of the major challenges in this project was designing a
flexible, concise and efficient interface for asynchronous I/O in
Java.  The design of the AsyncFile library was heavily influenced
by several existing asynchronous I/O interfaces, which we briefly
outline here.

The Microsoft Windows NT operating system provides direct
support for “Overlapped Files” within the Win32 API [15].  In
this interface, the application initiates an I/O operation and
specifies either a handle for the operation or a completion routine
callback. The application can check the status of ongoing opera-
tions, stop and wait for a particular operation to complete, or poll
for any queued completion routines (callback routines execute
synchronously when the application explicitly indicates it is
ready to receive them). The interface allows the application to
specify at file open time whether the I/O should be buffered
(which implies an additional copy to/from the OS buffers) or
unbuffered (zero copies – the buffer passed by the application is
used directly by the low-level disk I/O driver). The important
caveat associated with unbuffered files is that all I/O must be
made in sizes that are an even multiple of the disk volume’s
sector size, and the I/O requests must be sector aligned in mem-
ory and on-disk.  This is a significant limitation, but is funda-
mental to any zero-copy scheme because all modern disks per-
form I/O in aligned sector units [21], [22]. The advantage to such
a low-level interface is that the application can directly control
its caching behavior using application-specific knowledge; this
technique is especially effective in applications such as database
management systems that are designed from the ground up to
exploit this level of control.

The Solaris operating system provides primitive support for buff-
ered asynchronous I/O through the aio library [24]. The functions
aioread() and aiowrite() are used to initiate operations, and syn-
chronization is achieved by catching the SIGAIO UNIX signal
sent on completion or calling the aiowait() function to poll or
wait for an operation to finish. Note that unlike other synchroni-
zation implementations, the aiowait() interface is not request
specific – that is, it waits for any operation spawned by the cur-
rent process to complete without allowing the programmer to
specify which requests are of interest. This is an inconvenience
that was remedied in the new Solaris Posix4 library, which offers
request-specific polling and waiting, a more flexible signaling
interface, application-directed request prioritization, and support
for asynchronous buffer flushing requests.  Unfortunately, this
new interface is only available for Solaris 2.6 and higher.  The
prototype discussed in this paper was implemented using the
basic aio library in the interests of maximizing portability, but
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future incarnations may move to the newer interface in order to
simplify the control logic.

The Message Passing Interface (MPI) Standard, an influential
standard in the parallel computing community, has included
buffered asynchronous I/O primitives in the new MPI 2.0 Speci-
fication [14] through the MPI_FILE_IREAD_* and
MPI_FILE_IWRITE_* initiation functions, using the MPI_TEST
and MPI_WAIT functions for synchronization. Implementations
of the specification are still free to use blocking semantics for
these calls if the hardware is unsuitable, but the fact they were
included in the specification is a clear sign that OS-managed,
asynchronous I/O has been recognized as an important point in
the design space for high-performance computing. Hopefully this
will prompt more OS vendors to incorporate such primitives into
their system call or standard library interfaces.

3. BULK SYNCHRONOUS EXTENSIONS
3.1 Library Interface
Figure 1 presents the public declarations for our bulk synchro-
nous extensions to the I/O libraries.  The extensions use sub-
classing to add support for bulk I/O to the java.io.* classes that
implement the DataInput/DataOutput abstract interfaces [8]. The
new bulk I/O methods are readArray() and writeArray(), which
take a single-dimensional array of primitive type that will par-
ticipate in the I/O. Overloaded forms of these methods take ad-
ditional arguments (array offset and element count), allowing the
programmer to specify a contiguous subset of the elements to be
operated on. The array argument is declared as having type Ob-
ject to succinctly accommodate all of the permitted array types;
in Titanium, this also includes arrays of atomic immutable ob-
jects. The classes do not directly support arrays of multiple di-
mensions or whose elements are of reference type, as discussed
in section 6. Given these methods, the programmer can perform
bulk I/O on arrays of arbitrary length with a constant method call
overhead.

3.2 Implementation
The methods are implemented natively by casting the array ar-
gument to a byte array and passing it to the byte array I/O meth-
ods of the parent classes. Leveraging the existing functionality of
the parent classes in this way made the implementation relatively
trivial and portable. Note this implementation strategy is only
valid because of our restriction to single-dimensional arrays of

non-reference type; this restriction guarantees that the array ele-
ment data all resides contiguously in memory.

The only implementation complexity that arises is maintaining
the platform-independent on-disk representation required by the
Java standard. Specifically, little-endian implementations of
these methods must perform a byte-swapping pass on the array
data, in order to ensure that data is written out in big-endian
order as required by the Java standard [8].

3.3 Safety Issues
The new I/O primitives maintain the level of language safety
present in the legacy Java I/O library. A rigorous proof is beyond
the scope of this paper, but we sketch the reasoning here. Intui-
tively, the bulk methods accomplish what can already be done
given the Java I/O primitives, albeit much faster.  Using an ap-
propriate composition of DataOutputStream and ByteArray-
OutputStream objects, it is possible to change an arbitrary list of
Java primitive values into a single dimensional, untyped byte
array using the write*() methods and a loop. Similarly, Data-
InputStream and ByteArrayInputStream allow one to extract an
arbitrary list of Java primitive values from an untyped byte array.
These untyped byte arrays can be used to perform bulk I/O using
the existing methods in the DataInput/DataOutput interface
(these only provide bulk I/O for byte arrays).

The bulk extensions accomplish exactly this behavior4, except
they do it much faster by reducing the number of method calls
necessary to a small constant, providing enormous speed-ups in
practice. We suspect that the observed speedups may be even
more significant on JVM-based Java dialects where the native
method call overhead is even more significant than in Titanium
(where all method calls cost the same as a C function call).

4. BULK ASYNCHRONOUS EXTENSIONS
4.1 Library Interface
The second extension proposed and implemented in this research
is the AsyncFile class.  The goals of the library, in order of im-
portance, are performance, power, and simplicity.  Performance
issues are addressed by providing support for asynchronous bulk
file I/O, allowing I/O to proceed with overlapped computation.
Power, that is to say expressiveness, was achieved by studying
the existing interfaces for asynchronous I/O and formulating a
design that takes the best features of each and places them in a
Java framework. Specifically, the synchronization primitives
were designed to be very flexible and expressive. Lastly, sim-
plicity was achieved by adhering to the Java “flavor” wherever
possible and minimizing the number method calls required to
perform an I/O operation, thereby making the interface easy to
learn and use.

                                                            
4 There is actually a very subtle difference that may arise de-

pending on how the bulk extensions are implemented. If the
“casting” operation is implemented as a literal type-cast, then
the byte array produced will be an alias of the typed array. Im-
plementations in safety-critical dialects can allocate a tempo-
rary buffer and perform a single memcpy() operation to remedy
this detail, however our implementation chooses to ignore it in
the interests of maximizing performance.

package ti.io;
public class BulkRandomAccessFile extends RandomAccessFile {

public void readArray(Object array) throws IOException;
public void writeArray(Object array) throws IOException;
public void readArray(Object array,
   int arrayoffset, int count) throws IOException;
public void writeArray(Object array,
   int arrayoffset, int count) throws IOException;

}
public class BulkDataInputStream extends DataInputStream {

public void readArray(Object array) throws IOException;
public void readArray(Object array,
   int arrayoffset, int count) throws IOException;

}
public class BulkDataOutputStream extends DataOutputStream{

public void writeArray(Object array) throws IOException;
public void writeArray(Object array,
   int arrayoffset, int count) throws IOException;

}

Figure 1: Bulk Synchronous I/O Extensions
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4.1.1 File-level Control
Figures 2 and 3 present the public declarations of the AsyncFile
and AsyncFileRequest classes, which constitute the interface of
new library. We sketch the semantics of the library below; the
detailed specifications are available on the Titanium web site
[25].  The interface is similar to the RandomAccessFile class, in
that the user is given the ability to seek to random positions in
the file, although the default behavior is to service requests se-
quentially.  The AsyncFile class is the abstraction for a non-
blocking, buffered5 file with support for bulk I/O.  The methods
for file-level control are self-explanatory and identical to those
provided by RandomAccessFile [8].

4.1.2 Request Initiation
The second section of Figure 2 documents the I/O initiation
methods. The I/O initiation methods are readArray() and write-
Array(), which work similarly to the analogous methods in the
bulk synchronous classes. When these methods are called they
perform type-checking, bounds-checking and end-of-file-
checking, then initiate the requested asynchronous I/O operation.
These methods return an AsyncFileRequest object (see Figure 3),
which serves as the application’s handle to the non-blocking
operation that was initiated. This handle is used in subsequent
calls to perform synchronization.

Once the asynchronous request has been successfully initiated,
control is returned to the application. While the non-blocking I/O
completes in the background the application may perform other
arbitrary computations - however, it must not access the array
being used for I/O until the operation completes. The application
is also permitted to initiate other synchronous or asynchronous
file operations to run concurrently.
                                                            
5 There is no explicit buffering in the prototype implementation,

but it is provided within the OS.

4.1.3 Request Synchronization
The synchronization methods of AsyncFile were designed to be
flexible and expressive.  Besides the basic capabilities of polling
the status of a particular request and waiting for a request com-
pletion, the application may also concisely poll or wait for all the
requests in-flight for a particular file, or even a set of requests
from different files.  Some applications with simple requirements
may not even need to explicitly keep track of their AsyncFileRe-
quest handles, relying instead on file-wide synchronization.

When the application wishes to synchronize with the ongoing
operations, it calls one of the “Done” methods in the AsyncFile
or AsyncFileRequest classes.  The Done methods each take a
time-out parameter specifying an interval in milliseconds that
ranges anywhere from zero (poll) to infinity (a specially provided
constant that means block indefinitely). The semantics of the
Done methods are to check the status of the AsyncFileRequests
the application is querying, raise any I/O exceptions that may
have occurred, and return a boolean indicating whether the Done
condition was satisfied. For example, the AsyncFile method all-
Done(int) waits for all the pending operations on this AsyncFile
object to complete or for the timeout to expire (whichever hap-
pens first), then returns true or false to indicate which happened.
The static allDone(int, AsyncFileRequest[]) method is similar,
except it waits for all the requests in the provided list to com-
plete or for the timeout to expire. Similarly, the static any-
Done(int, AsyncFileRequest[]) method returns when at least one
of the listed requests is complete (or the timeout expires). The
AsyncFileRequest.done(int) method is used for checking just a
single request, and is semantically identical to calling
AsyncFile.anyDone and passing just this request (the timeout
argument defaults to infinity if omitted).

4.1.4 Exceptions and I/O Errors
Any of the Done methods may throw an I/O exception if one of
the requests being queried has ended in an exceptional condition.
In most cases, scientific applications are programmed with fail-
abort semantics – that is, I/O exceptions are generally so rare in
debugged code that the programmer does not care what happens
if one occurs. This default case is handled nicely by the Java
exception mechanism; in the absence of catch code, any excep-
tion thrown propagates to the top of the program and halts exe-
cution with an error. However, support is also provided for appli-
cations that wish to catch I/O exceptions and possibly perform
some form of recovery - for example, check-pointing their state
before shutting down to minimize the cost of lost work.

package ti.io;
public class AsyncFile {

// -------  File-level Control ---------
public AsyncFile(String filename, String mode)
   throws IOException, IllegalArgumentException;
public AsyncFile(File filename, String mode)
   throws IOException, IllegalArgumentException;

public long length() throws IOException;
public long getFilePointer() throws FileNotOpenException;
public void seek(long offset) throws IOException;
public void close() throws FileNotOpenException;
public void cancel() throws IOException;

// ------- Request Initiation ---------
public AsyncFileRequest readArray(Object array)
   throws IOException;
public AsyncFileRequest writeArray(Object array)
   throws IOException;
public AsyncFileRequest readArray(Object array,
   int arrayoffset, int count) throws IOException;
public AsyncFileRequest writeArray(Object array,
   int arrayoffset, int count) throws IOException;

// ------- Request Synchronization ---------
public static final int TIME_INF;
public boolean allDone(int timetowait) throws IOException;
public static boolean anyDone(int timetowait,
    AsyncFileRequest [] requestlist) throws IOException;
public static boolean allDone(int timetowait,
    AsyncFileRequest [] requestlist) throws IOException;

}

Figure 2: AsyncFile Class

package ti.io;
public class AsyncFileRequest {

public final AsyncFile parent;

public boolean done(int timetowait) throws IOException;
public boolean done() throws IOException;

public void cancel() throws IOException;
public void clearException();

}

Figure 3: AsyncFileRequest Class
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Figure 4 illustrates the state diagram for AsyncFileRequest ob-
jects. AsyncFileRequest objects begin their life in the “In Flight”
state when they are returned from the readArray() and writeAr-
ray() methods. The common behavior is for the I/O to complete
successfully and for the AsyncFileRequest to move into the
“Completed” state where it remains until it is destroyed. How-
ever, if an I/O error occurs, the AsyncFileRequest moves into the
“I/O Error” state – future calls to the Done methods which in-
clude this AsyncFileRequest will cause an exception to be
thrown. In the case of an error, the programmer may wish to call
the AsyncFileRequest.clearException() method, which moves the
exceptional request into the “Error Cleared” state, so that further
calls to Done methods which include this request will not re-
throw the exception.

The AsyncFileRequest.cancel() method is used to cancel a par-
ticular request if it is still in-progress, a handy capability for
some applications. This feature may be useful for applications
that are reading from slow or highly contended mirrored disks
(where a response from either is sufficient, so a request can be
issued to both disks and the “loser” can be canceled). It can also
be used to support applications that wish to issue speculative
prefetches and cancel on misprediction. Canceling a request frees
I/O and OS resources, and moves the request into the cancelled
state (which is identical to the “I/O Error” state, except the ex-
ception thrown will always be an AsyncIOCanceledException).

4.2 Asynchronous Library Design Results
We believe the AsyncFile interface meets the design goals of
performance, power and simplicity. Performance is provided by
enabling overlapped computation and supporting bulk I/O (em-
pirical results are presented in section 5). In terms of power,
initial usability results indicate the interface is very expressive
and a natural match for the types of synchronization which appli-
cations wish to perform. Specifically, the interface makes it very
easy to open a file, initiate a number of requests, then work on
each of them as they complete, allowing the OS disk scheduler to
choose the optimal evaluation order. The random access feature
allows applications to jump around to arbitrary parts of a file,
and is especially useful for applications where different proces-
sors write their results to different assigned areas of a file (for
example, in parallel radix sort). The interface also very naturally
accommodates double-buffering algorithms, which use a leap-
frog approach, performing I/O on one chunk of memory while
computing on the other, then switching them. The exception

semantics fit cleanly into the Java exception model and default to
intelligent behavior. Finally, the implementation fully supports
64-bit file offsets for I/O on massive files.

To test usability and performance, we wrote a benchmark appli-
cation (Figure 5) that implements the initial sorting pass of an
external merge sort. The initial pass of an external merge sort
algorithm repeatedly reads a large chunk of a file, performs an
in-memory sort, and writes the sorted chunk out to disk. Subse-
quent passes merge these sorted fragments into larger sorted
fragments until only a single sorted fragment remains – however,
we have omitted the merge passes to avoid complicating the in-
terpretation of the performance results. The actual computations
performed by the benchmark are admittedly somewhat atypical

In Flight

Canceled

Error
Cleared

File
 I/O

Request Cancelled

I/O Error
Clear

Clear

Request Initated

Completed

I/O Error

Figure 4: AsyncFileRequest State Diagram // open files
AsyncFile inf = new AsyncFile(“infile.data”,"r");
AsyncFile outf = new AsyncFile(“outfile.data”,"rw");

// calc the number of chunks reqd. (assumed to be >= 3)
int chunksz = 4096; // 4096 longs = 32 KB chunks
int numchunks = (int)(inf.length()/(chunksz*8));

AsyncFileRequest Req1, Req2, Req3;  // request pointers
long [] B1 = new long[chunksz];     // Allocate buffers
long [] B2 = new long[chunksz];
long [] B3 = new long[chunksz];

inf.readArray(B1).done(); // blocking read(B1)

int chunksleft = numchunks-1;

while (chunksleft > 1) { // the “steady-state” loop

  Req2 = inf.readArray(B2);
  sort(B1);
  Req1 = outf.writeArray(B1);

  // wait( B2, B3 )
  AsyncFileRequest [] tmplist1 = { Req2, Req3 };
  AsyncFile.allDone(AsyncFile.TIME_INF, tmplist1);

  Req3 = inf.readArray(B3);
  sort(B2);
  Req2 = outf.writeArray(B2);

  // wait( B1, B3 )
  AsyncFileRequest [] tmplist2 = { Req1, Req3 };
  AsyncFile.allDone(AsyncFile.TIME_INF, tmplist2);

  // do some swapping
  long [] oldB1 = B1; AsyncFileRequest oldReq1 = Req1;
  long [] oldB2 = B2; AsyncFileRequest oldReq2 = Req2;
  long [] oldB3 = B3; AsyncFileRequest oldReq3 = Req3;
  B1 = oldB3;  Req1 = oldReq3;
  B2 = oldB1;  Req2 = oldReq1;
  B3 = oldB2;  Req3 = oldReq2;

  chunksleft -= 2;
}
if (chunksleft == 1) {
  Req2 = inf.readArray(B2);
  sort(B1);
  Req1 = outf.writeArray(B1);

  Req2.done(); // wait(B2)
  sort(B2);
  Req2 = outf.writeArray(B2);

  // wait( B1, B2 )
  AsyncFileRequest [] tmplist3 = { Req1, Req2 };
  AsyncFile.allDone(AsyncFile.TIME_INF, tmplist3);
}
else { // chunksleft == 0
  sort(B1);
  outf.writeArray(B1).done(); // blocking write(B1)
}

Figure 5: Code fragment from external sort application
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for a scientific application, however the program’s behavior is
similar to many data-mining applications and has the advantage
of simplicity and ease of exposition. Furthermore, the regular
pattern of computation and I/O on large chunks of data makes
this application a prime candidate for optimization using the
AsyncFile library.

The asynchronous version of the application uses double-
buffering on the input and output, and cleverly manages to do so
using only three memory buffers (this is a useful optimization
because the buffers can be made larger while still fitting in
physical memory, leading to larger sorted fragments and fewer
subsequent merge passes). This optimization is enabled by the
fact that multiple I/O operations can be outstanding simultane-
ously. The relevant piece of the source code is presented in Fig-
ure 5 (we have omitted the performance instrumentation code
and the body of the sort function, which is a standard O(n log n)
quicksort). Although this program has a rather complicated pat-
tern of file I/O, we managed to write the entire I/O skeleton and
get it working in less than 30 minutes. We believe this is a major
victory in terms of simplicity.

As far as expressiveness is concerned, the double-buffered code
that uses AsyncFile occupies about 40 lines of non-comment
code, whereas the analogous single-buffered synchronous code
written for the Java I/O stream library occupies about 20 lines.
When one considers the increased fundamental complexity of the
double-buffered algorithm, a 20-line increase seems very modest
– we believe this is a testament to the expressiveness of the in-
terface. The code utilizing the asynchronous library adds a few
lines of code for request synchronization, but it eliminates value-
reading loops, file stream composition, and an EOF exception
handler from the code written for the Java I/O stream library.

One subtle feature of the AsyncFile interface is that it concisely
allows one to perform synchronous I/O as a special case when no
useful overlapped computation can be performed (for example,
while reading the first buffer or writing the last buffer in a dou-
ble-buffered algorithm). One example is the first call to the
read() method in Figure 5:

inf.readArray(buf1).done(); // blocking read(buf1)

When the library is accessed in this synchronous manner, it be-
haves very similarly to the BulkRandomAccessFile extension
(and incidentally, their synchronous performance is nearly identi-
cal).

5. PERFORMANCE RESULTS
The double-buffered sort presented in Figure 5 which uses the
AsyncFile library was re-implemented to use single-buffered,
blocking I/O with the new bulk synchronous classes, and also
with various configurations of the existing Java I/O libraries in
order to evaluate the relative performance gain of the extensions.
The I/O library configurations we shall present are listed in Ta-
ble 1 – the first three are the “legacy” configurations provided by
Java, the last three embody the extensions added in this paper.
Buffered configurations used the default 2KB memory buffer.

The tests were run using input files that ranged in size from 1
MB to 128 MB, with chunk sizes ranging from 32 KB to 512
KB.  We collected a large amount of data, but in the interests of
space, we present only a few of the more interesting results.

Specifically, chunk size was (not surprisingly) found to have
little influence on the total I/O time for the synchronous configu-
rations.  All performance data presented in this paper was gath-
ered on a Sun Ultra-1/170 workstation (a node from the Berkeley
NOW) running Solaris 5.6 with I/O on the local file system. All
tests were compiled using Titanium tc version 1.40 with full
optimization and the uniprocessor backend. The relative per-
formance of the various configurations was found to be compara-
ble when using network file systems and other hardware plat-
forms, but these results are not presented here.

Several other configurations were considered and similarly
omitted for brevity – for example, adding buffering to the bulkds
configuration was found to make no difference in this applica-
tion. Varying the buffer size on buffered configurations made
very little difference over a size of about 128 bytes (2KB is more
than sufficient). Using the AsyncFile library with an entirely
synchronous algorithm yielded almost the same results as bulkraf
(there was a few percent overhead which can be attributed to the
bookkeeping code that handles asynchronous I/O initiation and
synchronization).  We also considered and discarded several
buffered and unbuffered configurations using the textual I/O
primitives of the Java libraries, which (not surprisingly) always
performed significantly worse than their binary counterparts.

5.1 Bulk I/O Results
Figure 6 compares the throughput in MB per second for the ex-
ternal merge sort application, ranging over different file sizes on
the various configurations. Note that the throughput values
graphed in the figures represent the throughput for the entire
algorithm, and cannot be directly compared with disk bandwidths
for two reasons. First, the data size used to calculate this
throughput is the input file size, and the total I/O volume is actu-
ally twice that because the algorithm reads and writes every
chunk of data that it sorts. Secondly, the time used to calculate
this throughput is the total running time, which includes time
dedicated to sorting (Section 5.3 presents a detailed breakdown
of this running time).

The primary observation to be made from Figure 6 is that the
new bulk I/O configurations always beat the legacy Java librar-
ies, by amounts ranging from 2x to over 60x. The slowest con-
figurations were the unbuffered legacy libraries (raf and ds) – the
raf configuration is especially significant because it is the only
mechanism provided by the legacy Java libraries that allows
random file accesses (which are crucial in many applications).
Adding buffering to the stream configuration (dsb) gives the best
throughput offered by the legacy libraries, but the performance of
dsb is still less than half that of the bulk I/O configurations. The
bulk synchronous I/O configurations (bulkraf and bulkds) deliver
the best synchronous throughput and are roughly similar in per-
formance. Finally, the bulk asynchronous configuration (async)
gives a noticeable further improvement over bulkraf and bulkds
to achieve the best throughput (making it over 60x faster than raf
and ds).

5.2 Overlapped Computation Results
In comparing the relative performance merits of bulk synchro-
nous I/O and bulk asynchronous I/O, it is instructive to examine
the ideal situation and derive an upper bound for the perform-
ance gain possible in the presence of an I/O – computation over-
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lap. To this end we start with several overly-optimistic assump-
tions: 1) the total CPU work and total disk work is identical in
either configuration, 2) both resources are completely dedicated
to this application, 3) there is no computational overhead for the
asynchronous initiation and synchronization routines (they run in
zero time), and 4) the computational performance is unaffected

by the I/O taking place in the background. The best situation we
could hope for is to keep both the CPU and disk busy 100% of
the time, and under the above assumptions, this implies a 50%
speedup from I/O – computation overlap over the synchronous
case where the disk and CPU time is serialized6.

In practice, several factors stand in the way of reaching the ideal
speedup. Asynchronous I/O entails more bookkeeping and startup
costs than synchronous I/O - the overhead for the initiation and
synchronization routines can be significant. Secondly, CPU per-
formance may be somewhat adversely affected by the I/O taking
place in the background, depending on the I/O and memory bus
architecture.  Finally, there are indirect costs in the application
itself that are implied by overlapping I/O with computation – for
example, a application designed for overlapped I/O may require
additional memory buffers, imposing a larger memory footprint
that results in degraded cache performance.

In order to best observe the performance gains of overlapped I/O
for this application, it is necessary to balance the CPU and disk
workloads by using larger chunk sizes (this increases the total
amount of sorting work done by the CPU while the I/O work
remains approximately constant). Figure 7 compares the running
time performance of async against the fastest synchronous con-
figuration (bulkds) with a chunk size of 512 KB.  Because the
I/O for the first and last chunks in the async algorithm must still
be performed synchronously, the performance gain of async in-
creases as the file size increases and these chunks become negli-
gible with respect to the entire file. As the file size increases to
256 MB, the performance gain of using asynchronous I/O reaches
about 28% and tops out at about 30% for larger files. As pre-
dicted, practical overheads prevent the async algorithm from
achieving the ideal 50% speedup over the synchronous configu-
ration, but a 28% improvement is still quite valuable for I/O-
intensive applications which demand the highest possible per-
formance.

5.3 Performance Breakdown
Table 2 provides a performance breakdown detailing the areas
where the benchmark application spends its time in each of the
configurations. The total time is broken down into the time spent
reading, writing, sorting and (for the asynchronous algorithm)
waiting at synchronization points.  The table gives the raw data
that corresponds to the 64 MB data points in Figure 6.  For com-
parison, the table also includes the performance breakdown for a
bulk synchronous version of the algorithm written entirely in C.

There are many interesting conclusions to be drawn from this
breakdown. First, the raf and ds configurations are clearly domi-
nated by I/O method call and system call overheads; the only
significant difference between the I/O behavior of ds and dsb is
that the buffering in dsb induces far fewer calls to the methods of

                                                            
6 This discussion also assumes a storage subsystem that’s only

capable of servicing a single I/O request at a time. In multi-
disk systems that can service several requests in parallel, asyn-
chronous I/O offers the additional benefit of overlapping I/O
with other I/O. The performance speedup in such a system is
limited only by the total I/O bandwidth and the degree of par-
allelism in the hardware and application requests.
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Figure 6: Sorting throughput with 32KB chunks
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Figure 7: Sorting throughput with 512 KB chunks

Table 1: I/O Configurations Presented

name Description
raf  RandomAccessFile()
ds  DataInputStream(FileInputStream())

 DataOutputStream(FileOutputStream())
dsb  DataInputStream(BufferedInputStream(FileInputStream()))

 DataOutputStream(BufferedOutputStream(FileOutputStream()))
bulkraf  BulkRandomAccessFile()
bulkds  BulkDataInputStream(FileInputStream())

 BulkDataOutputStream(FileOutputStream())
async  AsyncFile() - using the double-buffered algorithm of Figure 5
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FileInputStream/FileOutputStream and the underlying read() and
write() functions in the library native code.  Secondly, the low
write times for bulkraf and bulkds clearly reveal that this OS
does perform write-behind caching. However, the performance
benefits of the write-behind cache are only observed by the bulk
I/O configurations where the heavy method call overheads have
been reduced to a reasonable level.

Inspecting the breakdown of the pure C implementation, we dis-
cover that the pure I/O performance (read time + write time) of
the Java bulk extensions is very competitive with the I/O per-
formance of the C implementation. This is not terribly surprising,
because the Java code using the bulk I/O extensions is compiled
down to C code that behaves very similarly to the I/O code in the
hand-written C implementation. The sorting performance of the
Java configurations is less than stellar because the Titanium
optimizer is still under development and does not yet extensively
optimize the sort function. However, the sort has consistent per-
formance across all the Java configurations, so it can be viewed
as a fixed, “black-box” CPU workload - the issue of absolute
sorting performance is orthogonal to this investigation.

The breakdown of the async configuration reveals that the per-
formance benefits of this configuration come primarily from the
asynchronous reads (because the writes in the synchronous con-
figurations are already performed asynchronously thanks to the
write-behind cache).  This means it was probably unnecessary to
implement write buffering for this particular application and
platform – however, application-controlled asynchronous writes
are still a useful feature in general. Regardless, the asynchronous
reads clearly provide a significant performance win.

The asynchronous breakdown also quantifies the overheads de-
scribed in Section 5.2. As predicted, the asynchronous request
initiation methods have small, but non-zero costs – in this case,
they averaged 0.24 ms for each read initiation and 0.48 ms for
each write initiation. The slightly increased sorting time with
respect to the other Java configurations (about a 7% increase) is
due to the overlapped I/O that occasionally requires the attention
of the CPU and introduces some contention for the memory bus.
The time spent blocking in the synchronization methods indicates
that the CPU and disk workloads were not exactly balanced and
that occasionally the CPU blocked while waiting for an I/O op-
eration to complete.

6. LIMITATIONS AND  FUTURE WORK
There are several limitations in the current prototype implemen-
tation that have yet to be addressed. Perhaps the most important
remaining task is porting the AsyncFile library to platforms other

than Solaris – the library should be easily portable to any OS
providing the minimal asynchronous I/O primitives described in
Section 2, but no real attempt has been made to do so thus far.
An interim solution for Titanium implementations on platforms
lacking kernel support for asynchronous I/O would be to imple-
ment the initiation routines with blocking semantics on those
platforms. It may also be possible on some platforms to perform
I/O thread creation and management entirely within the native
routines to simulate the required behavior. Porting the AsyncFile
library may be less of a problem for (non-Titanium) Java dialects
that support arbitrary threading at the language level, because the
library could be implemented completely in Java. However, bulk
primitives would still be required at some level to achieve effi-
ciency and the overheads of thread creation and management in
Java might make a Java-level implementation unprofitable.

Another limitation of the current prototype implementation is
that it only supports file I/O on single-dimensional arrays of non-
reference types. The basic reason is that multidimensional arrays
in Java are unstructured and their data elements are stored non-
contiguously (multi-dimensional arrays are represented as a hier-
archy of references to single-dimensional arrays which could
possibly differ in size). In any case, a programmer could certainly
perform I/O on the constituent single-dimensional fragments of a
multi-dimensional Java array with the caveat that the application
may have to store some additional application-dependent meta-
information in order to recover the shape of a multi-dimensional
array read in this fashion.  It is not clear what it means to per-
form I/O on non-primitive (i.e. reference) types, although the
object serialization approach pioneered in Java 1.1 is probably a
good start. Titanium does not include serialization because it is
not a Java 1.0 feature, however several studies have reported that
standard object serialization is often too slow for data-intensive
applications [4], [12], [16]. Welsh describes some interesting
approaches to optimizing object serialization for file I/O [27].

The single-dimensional restriction is not a serious limitation in
Titanium, because the language includes a more powerful struc-
tured array abstraction called grids that provide better support for
multi-dimensional calculations. The bulk I/O extension described
in this paper has also been successfully adapted to work with
grids; the I/O performance gains are comparable, but the results
were not presented here for brevity.

There are several open issues concerning the lack of strong file
system consistency semantics in Java. The existing Java I/O li-
braries provide no OS-level file locking capabilities to limit con-
current accesses to a single file. Furthermore, they provide no
strong guarantees about the behavior of concurrent accesses to
the same region of a file when at least one thread is performing
updates. AsyncFile does not currently address these deficiencies
either, and strictly speaking, AsyncFile is just as safe as the ex-
isting libraries. However, since the interface does encourage
concurrent, asynchronous file accesses, it might be advantageous
to add some concurrency control features to help the programmer
ensure correctness.

A final limitation (which is also shared by all the I/O libraries) is
that nodes in a distributed system cannot use I/O objects created
by other nodes. The Titanium memory model provides a global
memory space that allows references to remote data objects, but

Table 2: Raw Performance Breakdown (in seconds)
64MB file, 32KB chunks (2048 chunks)

name total
time

read
time

write
time

sort
time

block
time

raf 2834.312 1298.845 1493.879 41.538
ds 2687.120 1229.493 1415.939 41.577
dsb 154.885 60.375 52.685 41.736

bulkraf 69.905 27.175 0.726 41.980
bulkds 67.828 24.943 0.874 41.925
async 54.262 * 0.500 * 0.979 44.655 8.094

C 39.514 24.111 0.958 14.371
* = these times only include the time to initiate the asynchronous operation
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most distributed operating systems do not implement file de-
scriptors that are portable across nodes, so the methods that per-
form kernel interactions would fail. This is not seen as a serious
limitation in the presence of a network file system, because each
processor can locally create its own file object that references the
appropriate file.

Other areas for future work include providing some form of im-
plicit data distribution – this is an important facet of parallel I/O
optimization that is currently left up to the explicit control of the
application. Another avenue for further exploration is adding
support for implicitly asynchronous file operations – one could
imagine a compiler optimization which converts blocking file
operations to non-blocking ones (perhaps hoisting them to earlier
locations in the program as well), and automatically inserts syn-
chronization operations before the first use of a buffer after a
non-blocking read. However, anecdotal evidence suggests that
programs designed without thought given to such optimizations
might not exhibit a large degree of CPU/disk parallelism without
a very sophisticated compiler analysis and extensive optimiza-
tions.

7. CONCLUSIONS
This paper has presented two extensions to the Java I/O libraries
that provide an efficient interface for high-performance applica-
tions that perform large amounts of file I/O. The bulk synchro-
nous extensions add array operations to the existing I/O libraries,
removing the bottlenecks associated with bulk I/O in the legacy
interface. The new AsyncFile classes provides library support for
asynchronous I/O, allowing applications to mask I/O latency with
overlapped computation. Experimental results on the Titanium-
based prototype demonstrate the extensions provide enormous
performance gains exceeding 60x on a simple sorting benchmark.
There is considerable room for future work, but it seems clear
that these extensions are a valuable addition to the Java pro-
grammer’s toolkit.
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